Electronic Supplementary Information (ESI)

Syntheses, crystal structures and luminescent properties of Zn(II)/Cd(II) supramolecular complexes incorporating 4-sulfinobenzoate and its in situ oxidized ligand

Huang Wang, Li-Hua Huo, Zhao-Peng Deng,^{*} Hui Zhao and Shan Gao^{*}

Fig. S1 2-D layer structure extended by hydrogen bonds with the $\pi \cdots \pi$ stacking interactions denoted as sea green planes.

Fig. S2 3-D supramolecular network of complex 1 extended by hydrogen bonds (green dashed lines) with the lattice water molecules denoted as green balls.

Fig. S3 C-H··· π and π - π stacking interactions in complexes **4** (a), **5** (b) and **6** (c). The dihedral angles between the pyridyl rings were reported in the main text.

Fig. S4 2-D layer structure stabilized by hydrogen bonds.

Fig. S5 3-D supramolecular network extended by hydrogen bonds (green dashed lines) between coordinated water molecules and carboxyl groups.

Fig. S6 Molecular structure (a) and 1-D linear chain structure (b) of the reported $\label{eq:classical} \{ [Cd_2(SB)_2(4,4'\text{-bipy})_4(H_2O)_3]_n \cdot 3nH_2O \}.$

PXRD Analysis. Powder X-ray diffraction (PXRD) patterns for solid samples of complexes **1-6** are measured at room temperature as illustrated in Fig. S7. The patterns are highly similar to their simulated ones (based on the single-crystal X-ray diffraction data), indicating that the single-crystal structures are really representative of the bulk of the corresponding samples.

Fig. S7 PXRD patterns for complexes 1-6.

Thermogravimetric analysis

To examine the thermal stability of the complexes, in this study, their stabilities were analyzed on crystalline samples by thermogravimetric analyses (TGA) from room temperature to 900 °C at a rate of 10 °C min⁻¹, under N₂ atmosphere. As shown in Fig. S8, the TGA curve indicates that complex 1 loses the lattice and coordinated water molecules from 40 to 160 °C with the observed weight loss of 13.98% (calcd 14.19%). The following gradually weigh losses correspond to the loss of the organic components occurs in the temperature range 160-580 °C. The remaining component is ZnO (obsd 16.25%, calcd 16.03%). Complex 2 exhibits the similar loss steps as complex 1 with the loss of the lattice and coordinated water molecules occurring between 40 and 156 °C (obsd 12.75%, calcd 12.99%). The following weight loss completes at 610 °C, corresponding to CdO (obsd 23.41%, calcd 23.15%). Complex 3 loses the coordinated water molecules from 50 to 120 °C with the observed weight loss of 7.58% (calcd 7.37%). Then, the following weight loss with the decomposing of organic components occurs in the temperature range 260-580 °C, and the final remaining component is CdO (obsd 25.98%, calcd 26.27%). The weight loss of the coordinated water molecules in complex 4 occurs between 55 and 115 °C (obsd 11.53%, calcd 11.76%). The following weight loss with the decomposing of organic components occurs in the temperature range 230-485 °C. The remaining component is ZnO (obsd 14.42%, calcd 14.80%). Complex 5 loses the lattice and coordinated water molecules from 35 to 120 °C with the observed weight loss of 19.71% (calcd 19.96%). Then, the following weight loss with the decomposing of organic components occurs in the temperature range 310-675 °C, and the final remaining component is ZnO (obsd 11.52%, calcd 11.27%). Complex 6 loses the lattice and coordinated water molecules from 35 to 130 °C with the observed weight loss of 8.05% (calcd 7.96%). Then, the following weight loss with the decomposing of organic components occurs in the temperature range 130-670 °C, and the final remaining component is CdO (obsd 19.03%, calcd 18.91%).

Fig. S8 TG curves of complexes 1-6.

Table S1 Selected bond lengths (Å) data of complexes $1-6^a$							
Complex 1							
$Zn(1)-O(4)^{i}$	2.0740(19)	$Zn(1)-O(1W)^{i}$	2.116(2)				
Zn(1)-O(4)	2.0740(19)	$Zn(1)-O(3)^{ii}$	2.152(2)				
Zn(1)-O(1W)	2.116(2)	$Zn(1)-O(3)^{iii}$	2.152(2)				
	Complex 2						
$Cd(1)-O(3)^{i}$	2.261(4)	Cd(1)-O(1W)	2.282(5)				
Cd(1)-O(3)	2.261(4)	Cd(1)-O(4) ⁱⁱ	2.318(4)				
$Cd(1)-O(1W)^{i}$	2.282(5)	$Cd(1)-O(4)^{iii}$	2.318(4)				
	Complex 3						
Cd(1)-O(2W)	2.318(3)	$Cd(1)-O(1)^{i}$	2.390(3)				
Cd(1)-O(3)	2.341(2)	Cd(1)-N(2)	2.414(3)				
Cd(1)-N(1)	2.365(3)	Cd(1)-O(1W)	2.432(3)				
$Cd(1)-O(2)^{i}$	2.476(3)						
Complex 4							
Zn(1)-O(2W)	2.112(6)	Zn(1)-O(3W)	2.155(6)				
Zn(1)-O(1)	2.129(6)	Zn(1)-N(1)	2.160(6)				
$Zn(1)-N(2)^{i}$	2.143(5)	Zn(1)-O(1W)	2.167(6)				
Complex 5							
Zn(1)-O(2W)	2.109(5)	Zn(1)-N(1)	2.140(5)				
Zn(1)-O(3W)	2.115(5)	Zn(1)-N(3)	2.147(5)				

Zn(1)-O(1W)	2.119(5)	Zn(1)-O(4W)	2.159(5)			
Complex 6						
Cd(1)-O(6)	2.310(4)	Cd(2)-O(1W)	2.300(4)			
Cd(1)-O(7)	2.655(4)	Cd(2)-O(2W)	2.314(4)			
Cd(1)-N(1)	2.339(4)	Cd(2)-O(3W)	2.336(3)			
Cd(1)-N(5)	2.339(4)	Cd(2)-N(7)	2.344(4)			
Cd(1)-N(3)	2.358(4)	Cd(2)-N(4)	2.350(4)			
Cd(1)-O(1)	2.422(3)	$Cd(2)-N(6)^{i}$	2.359(4)			
Cd(1)-O(2)	2.475(3)					
^a Symmetry operation: For 1, i -x,-y+2,-z+1; ii x-1,y,z; iii -x+1,-y+2,-z+1. For 2, i-x,-y+1,-z; ii -x+1,-y+1,-z; iii x-1,y,z. For 3, i -x+1,-y,-z. For 4, i x,y,z-1. For 6, x-1/2,-y+1/2,z+1/2.						

Table S2 Hydrogen bond parameters for complexes $1-6^a$						
D-H···A	d(D…H)/Å	d(H···A)/Å	d(D…A)/Å	<(DHA)/º		
Complex 1						
O(1W)-H(1W1)O(1) ^v	0.85	1.87	2.720(3)	175.7		
O(1W)-H(1W2)O(2W) ^{vi}	0.85	2.04	2.887(3)	175.7		
O(2)-H(2B)O(2W)	0.82	1.87	2.685(3)	173.1		
O(2W)-H(2W1)O(3) ^{vii}	0.85	1.93	2.783(3)	177.9		
	Com	plex 2				
O(1W)-H(1W1)O(2W) ^v	0.85(2)	2.04(2)	2.877(7)	169(8)		
O(1W)-H(1W2)O(1) ^{vi}	0.85(2)	1.89(2)	2.721(6)	165(8)		
O(2W)-H(2W1)O(4) ^{vii}	0.85(2)	1.97(2)	2.811(6)	177(8)		
O(2W)-H(2W2)O(4) ^{viii}	0.85(2)	2.45(2)	3.283(6)	170(7)		
O(2)-H(2A)O(2W)	0.82	1.87	2.678(6)	169.5		
Complex 3						
O(1W)-H(1W1)O(4) ⁱⁱ	0.85(3)	1.93(3)	2.775(3)	176(4)		
O(1W)-H(1W2)O(2) ⁱⁱⁱ	0.85(3)	2.14(3)	2.960(4)	163(4)		
O(2W)-H(2W1)O(2) ⁱⁱⁱ	0.85(3)	2.15(2)	2.882(4)	145(3)		
O(2W)-H(2W1)O(4) ^{iv}	0.85(3)	2.52(3)	2.934(3)	111(3)		
O(2W)-H(2W2)O(4)	0.85(3)	1.98(3)	2.777(3)	158(3)		

Complex 4

O(1W)-H(1W1)O(2)	0.82	2.00	2.766(9)	156.1
O(1W)-H(1W2)O(4) ⁱⁱⁱ	0.82	2.13	2.727(10)	129.4
O(2W)-H(2W1)O(4) ^{iv}	0.82	1.85	2.655(9)	167.8
O(2W)-H(2W2)O(2) ^v	0.82	2.04	2.812(9)	157.4
O(3W)-H(3W1)O(3) ^{vi}	0.82	2.00	2.761(9)	154.4
O(3W)-H(3W2)O(3) ^{iv}	0.82	2.05	2.860(9)	168.0
	Com	plex 5		
O(1W)-H(1W1)O(5W)	0.85(8)	2.04(5)	2.804(8)	149(10)
O(1W)-H(1W2)N(2) ⁱ	0.85(8)	1.96(4)	2.766(8)	157(10)
O(2W)-H(2W1)O(5)	0.85(8)	1.87(3)	2.689(8)	162(9)
O(2W)-H(2W2)O(5W) ⁱⁱ	0.85(8)	1.94(2)	2.777(8)	166(8)
O(3W)-H(3W1)O(3) ⁱⁱⁱ	0.85(8)	2.02(5)	2.790(7)	151(8)
O(3W)-H(3W2)N(4) ^{iv}	0.85(8)	2.07(5)	2.812(8)	147(8)
O(4W)-H(4W1)O(3) ^v	0.85(8)	2.38(8)	2.970(8)	127(8)
O(4W)-H(4W2)O(6W)	0.85(8)	1.86(3)	2.688(9)	167(11)
O(5W)-H(5W1)O(4)	0.85(8)	1.920(15)	2.769(9)	176(10)
O(5W)-H(5W2)O(8W) ^{vi}	0.85(8)	1.939(15)	2.792(10)	177(11)
O(6W)-H(6W1)O(1) ⁱⁱⁱ	0.85	1.99	2.841(10)	176.1
O(6W)-H(6W2)O(7W) ^{vii}	0.85	1.72	2.570(13)	175.6
O(7W)-H(7W1)O(8W) ^{vi}	0.85	2.15	3.000(14)	176.7
O(7W)-H(7W2)O(5)	0.85	1.73	2.579(11)	177.5
O(8W)-H(8W1)O(2)	0.85(8)	1.90(2)	2.742(12)	172(13)

O(8W)-H(8W2)O(6W) ^{VIII}	0.85(8)	2.13(8)	2.877(11)	146(12)		
Complex 6						
O(1W)-H(1W1)N(8) ⁱⁱⁱ	0.85	2.29	2.791(6)	118.3		
O(1W)-H(1W2)O(5W) ^{iv}	0.86	2.40	3.261(7)	179.2		
O(2W)-H(2W1)O(7) ^v	0.85	2.37	2.932(6)	124.4		
O(2W)-H(2W2)O(1W)	0.85	2.54	3.389(6)	179.6		
O(3W)-H(3W1)O(1W)	0.85	2.47	3.307(5)	168.8		
O(3W)-H(3W2)N(6) ⁱ	0.85	2.34	3.180(5)	169.0		
O(4W)-H(4W1)O(5) ^{vi}	0.85	2.26	2.880(9)	129.2		
O(4W)-H(4W2)O(10)	0.87	1.88	2.685(8)	153.7		
O(5W)-H(5W1)O(1) ^{vii}	0.87	1.99	2.858(6)	178.7		
O(5W)-H(5W2)N(2)	0.85	1.93	2.754(6)	164.9		
O(6W)-H(6W1)O(4)	0.85	1.92	2.770(8)	174.4		
O(6W)-H(6W2)O(8) ^{vii}	0.85	2.15	2.998(9)	174.8		
O(1W)-H(1W1)N(8) ⁱⁱⁱ	0.85	2.29	2.791(6)	118.3		

^a Symmetry operation: **For 1**, v -x+1,-y+2,-z+2; vi -x,-y+2,-z+2; vii -x+1,-y+1,-z+2. **For 2**, v x,y,z-1; vi x-1,y,z-1; vii -x+1,-y,-z+1; viii x,y,z+1. **For 3**, ii x+1,y,z; iii x,y+1,z; iv -x,-y+1,-z. **For 4**, iii -x+1,-y+1,-z+1; iv x+1,y,z-1; v x+1,y,z; vi -x+1,-y,-z+1. **For 5**, i x,y,z+1; ii x+1,y,z; iii -x+2,y-1/2,-z+1; iv x,y,z-1; v -x+1,y-1/2,-z+1; vi x-1,y,z-1; vii -x+1,y-1/2,-z; viii -x+1,y+1/2,-z+1. **For 6**, i, x-1/2,-y+1/2,z+1/2; iii, x,-y+1,z-1/2; iv, x+1/2,y+1/2,z+1; v, x,-y,z+1/2; vi, x+1/2,-y+1/2,z+1/2; vii, x,-y,z-1/2.