Supporting Information

Controlled modification of the inorganic and organic brick in an Al-based MOF by direct and post-synthetic synthesis routes

Tim Ahnfeldt,^a Daniel Gunzelmann,^b Julia Wack,^b Jürgen Senker^{b,*} and Norbert Stock^{a,*}

^aInsitut für Anorganische Chemie, Christian-Albrechts-Universität, Max-Eyth Straße 2, 24118 Kiel, Germany
^bAnorganische Chemie III, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany

- 1. Proton-proton homonuclear spin diffusion spectra of CAU-1-NHCH₃, and CAU-1-NH₂
- 2. Carbon-proton HETCOR spectra of CAU-1-NHCH₃ and CAU-1-NHCOCH₃
- **3.** Reaction times to reach full crystallisation as determined from the EDXRD studies for MW-assisted reactions
- 4. X-ray powder diffraction (XRPD) patterns of CAU-1 obtained by MW-assisted heating at different temperatures
- 5. Time dependence of the methylation of the MW-assisted synthesis at 145 $^{\circ}C$
- 6. Accuracy of ¹H NMR measurements and reproducibility of the MW-assisted synthesis of CAU-1-NH₂
- 7. Labelling of ¹H signals of the reaction product obtained under conventional heating using a glass reactor
- 8. TG-curve of CAU-1-NH₂
- 9. Activation process screened by ¹H NMR spectroscopy
- 10. Temperature-dependent X-ray powder diffraction measurements (TD-XRPD)

1. Proton-proton homonuclear spin diffusion spectra of CAU-1-NHCH₃, and CAU-1-NH₂

Fig. S1 Proton-Proton Spin-Diffusion Spectra of CAU-1-NHCH₃ (left), and CAU-1-NH₂ (right) at Spin Diffusion mixing times of 1 μ s (top), 700 μ s, 1500 μ s and 4000 μ s (from top to bottom).

Fig. S2 Carbon-proton HETCOR spectra of CAU-1-NHCH₃ (left) and CAU-1-NHCOCH₃ (right) at contact times of 75 μ s (top) and 1000 μ s (bottom) showing short and long distance correlations, respectively.

3. Reaction times to reach full crystallisation ($\alpha = 1$) determined from the EDXRD studies for MW-assisted reactions

CAU-1 was synthesized by MW-assisted heating in the temperature range 115 - 145 °C. The reaction time for each temperature was determined from EDXRD studies on the product formation of CAU-1-NH₂ and corresponds to the time required to reach full crystallisation, i.e. extent of crystallisation, $\alpha = 1$ (Table S1).^[1]

Tab. S1 Reaction times to reach full crystallisation ($\alpha = 1$) determined from the EDXRD studies for MW-reactions carried out in the temperature range between 115-145 °C. Values taken form reference [1].

reaction temperature / °C	reaction time / min	
115	105	
120	65-70	
125	42	
130	25	
135	16	
140	10	
145	7-9	

4. X-ray powder diffraction (XRPD) patterns of CAU-1 obtained by MW-assisted heating at different temperatures

Fig. S3 X-ray powder diffraction (XRPD) patterns for CAU-1 obtained by MW-assisted heating carried out in the temperature range between 115 $^{\circ}$ C – 145 $^{\circ}$ C.

5. Time dependence of the methylation of the MW-assisted synthesis at 145 $^\circ\mathrm{C}$

Fig. S4 ¹H NMR spectra of the dissolved CAU-1 samples collected from MW-assisted syntheses at 145 °C using reaction times between 2 and 15 min. Each spectrum is normalized to the sum of the aromatic H signals (methylated and non-methylated). Signals due to methylated CAU-1 are highlighted red.

6. Accuracy of ¹H NMR spectra and reproducibility of the MW-assisted synthesis of CAU-1-NH₂

In three repeated reactions under identical condition (3min a-c) all directly dissolved products exhibit the identical degree of methylation in the ¹H NMR spectra, which clearly shows the good reproducibility of the synthesis and the measurements.

Fig. S5 ¹H NMR spectra of the isolated aminoterephthalic acid linker (black) and directly dissolved CAU-1 (red, blue and green) prepared by MW-assisted synthesis at 145 °C using a reaction time of 3 min. Each spectrum is normalized to the sum of aromatic H signals (methylated and unmethylated).

The integral ratios methoxy H-atoms : aromatic H-atoms of the products (3 min a-c) are between 1.14 and 1.21 (1.33 calc.). Thus, approximately 88% of the methoxy groups are incorporated in the framework after this reaction time according to the formula sum. We presume that syntheses at very short reaction times may lead to CAU-1-NH₂ for which a small fraction (12%) of the methoxy groups is replaced by OH-groups. Nevertheless, the product is still very crystalline and exhibits high thermal and chemical stability, such as CAU-1-CH₃ and CAU-1-CHCOCH₃.

7. Labelling of the set of ¹H signals of the reaction product carrying out under conventional heating method using a glass reactor

Scheme S1 Labelling of the ¹H signals in dimethylated, methylated and non-methylated CAU-1. ¹H NMR 500 MHz, (NaOD/D₂O) δ : **BDC-NH₂²:** 7.23 (d, 1H, H₁ ³J_{H-H} = 8.2Hz); 6.79 (s, 1H, H₃); 6.71 (d, 1H, H₂ ³J_{H-H} = 8.1Hz); **BDC-NHCH₃²:** 7.27 (d, 1H, H₅ ³J_{H-H} = 8.0Hz); 6.76 (s, 1H, H₆); 6.52 (d, 1H, H₅ ³J_{H-H} = 8.0Hz); 2.37 (s, 3H, H₇); **BDC-N(CH₃)₂²⁻:** 7.04 (s, 1H, H₁₀); 6.94 (d, 1H, H₉ ³J_{H-H} = 8.0Hz); 6.87 (d, 1H, H₈ ³J_{H-H} = 7.9Hz); 2.28 (s, 6H, H₁₁)

8. TG-curve of CAU-1-NH₂

Fig. S6 TG-curve of CAU-1-NH₂ synthesized via MW-heating ($3min / 145^{\circ}C$). The sample was measured in air with a heating rate of 4K / min and was degassed ($30 min / 130^{\circ}C$) before the measurement.

9. Activation process screened by ¹H NMR

Fig. S7 ¹H NMR spectra of differently activated CAU-1-NH₂ compounds prepared by MW-synthesis. After the washing process the compounds were treated using different activation procedures. Each spectrum is normalized to the sum of aromatic H signals (methylated and non-methylated, not shown).

10. Temperature-dependent X-ray powder diffraction measurements (TD-XRPD)

The TD-XRPD measurements of CAU-1-NH₂(OH), CAU-1-NHCH₃ and CAU-1-NHCOCH₃ are shown in Figure S8-S10. The data were obtained under air with a STOE STADI P diffractometer equipped with an image plate detector and a STOE capillary furnace (version 0.65.1) using monochromated Cu-K_{α 1} radiation. Each powder pattern was recorded in the 4-35° range (2 θ) at intervals of 10 °C up to 350 °C, and interval of 25 °C from 350-400 °C with duration of 15 min per scan. The temperature ramp between two patterns was set to 2 °C min⁻¹.

Fig. S8 Temperature-dependent X-ray powder diffraction patterns of CAU-1-NH₂(OH), $[Al_4(OH)_6((BDC-NH_2)_3]\cdot xH_2O$, in air (20 - 400 °C).

Fig. S9 Temperature-dependent X-ray powder diffraction patterns of CAU-1-NHCH₃, $[Al_4(OH)_2(OCH_3)_4(BDC-NHCH_3)_3] \cdot xH_2O$, in air (20 - 400 °C).

Fig. S10 Temperature-dependent X-ray powder diffraction patterns of CAU-1-NHCOCH₃, $[Al_4(OH)_2(OCH_3)_4(BDC-NHCOCH_3)_3] \cdot xH_2O$, in air (20 - 400 °C).

Literature

[1] T. Ahnfeldt, N. Stock, CrystEngComm, 2011, doi:110.1039/c1ce05956d