1

Electronic supplementary information (ESI)

Construction of coordination frameworks based on 4-imidazolyl tecton 1,4-di(1H-imidazol-4-yl)benzene and varied carboxylic acids

Shui-Sheng Chen,^{*a,b*} Yue Zhao,^{*a*} Jian Fan,^{*a*} Taka-aki Okamura,^{*c*} Zheng-Shuai Bai,^{*a*} Zhi-Hao Chen,^{*a*} and Wei-Yin Sun*^{*a*}

- ^a Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093, China E-mail: sunwy@nju.edu.cn; Fax: +86 25 83314502
- ^b School of Chemistry and Chemical Engineering, Fuyang Teachers College, Fuyang 236041, China

^c Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

Table S1 Selected bond lengths [Å] and bond angles [°] for complexes 1 - 9.

-			
Mn(1)-O(1)	2.1592(15)	Mn(1)-N(2)	2.2405(19)
Mn(1)-O(2)#2	2.2565(16)		
O(1)-Mn(1)-O(1)#1	146.69(8)	O(1)-Mn(1)-N(2)	103.62(7)
O(1)#1-Mn(1)-N(2)	97.55(6)	N(2)-Mn(1)-N(2)#1	100.43(10)
O(1)-Mn(1)-O(2)#2	75.13(5)	O(1)#1-Mn(1)-O(2)#2	80.65(6)
N(2)-Mn(1)-O(2)#2	87.07(7)	N(2)#1-Mn(1)-O(2)#2	170.67(6)
O(2)#2-Mn(1)-O(2)#3	86.03(9)		
2			
Zn(1)-O(4)#1	1.9564(18)	Zn(1)-O(1)	1.9743(17)

Zn(1)-N(1)	2.008(2)	Zn(1)-N(3)#2	2.033(2)
O(4)#1-Zn(1)-O(1)	113.06(8)	O(4)#1-Zn(1)-N(1)	115.73(8)
O(1)-Zn(1)-N(1)	93.84(8)	O(4)#1-Zn(1)-N(3)#2	106.51(8)
O(1)-Zn(1)-N(3)#2	103.22(9)	N(1)-Zn(1)-N(3)#2	123.04(8)
3			
Zn(1)-O(1)	1.960(5)	Zn(1)-O(5)	1.968(6)
Zn(1)-N(112)	2.018(6)	Zn(1)-N(212)	1.997(8)
Zn(2)-O(3)	1.961(5)	Zn(2)-O(9)#1	1.993(8)
Zn(2)-N(242)	2.010(6)	Zn(2)-N(312)	1.979(6)
Zn(3)-O(7)#2	1.994(8)	Zn(3)-O(13)	2.099(5)
Zn(3)-N(142)#3	2.002(7)	Zn(3)-N(342)	1.975(6)
Zn(4)-O(11)	1.963(6)	Zn(4)-O(15)	2.120(8)
Zn(4)-N(412)	2.005(6)	Zn(4)-N(442)	2.020(9)
O(1)-Zn(1)-O(5)	105.2(2)	O(1)-Zn(1)-N(112)	104.0(2)
O(1)-Zn(1)-N(212)	127.1(2)	O(5)-Zn(1)-N(112)	107.1(2)
O(5)-Zn(1)-N(212)	104.2(2)	N(112)-Zn(1)-N(212)	107.9(3)
O(3)-Zn(2)-O(9)#1	104.9(3)	O(3)-Zn(2)-N(242)	102.8(2)
O(3)-Zn(2)-N(312)	127.1(2)	O(9)#1-Zn(2)-N(242)	105.8(2)
O(9)#1-Zn(2)-N(312)	105.9(3)	N(242)-Zn(2)-N(312)	108.7(2)
O(7)#2-Zn(3)-O(13)	94.4(2)	O(7)#2-Zn(3)-N(142)#3	103.9(3)
O(7)#2-Zn(3)-N(342)	98.9(3)	O(13)-Zn(3)-N(142)#3	113.4(2)
O(13)-Zn(3)-N(342)	120.7(2)	N(142)#3-Zn(3)-N(342)	118.7(2)
O(11)-Zn(4)-O(15)	136.6(3)	O(11)-Zn(4)-N(412)	102.9(2)
O(11)-Zn(4)-N(442)	100.7(3)	O(15)-Zn(4)-N(412)	104.7(3)
O(15)-Zn(4)-N(442)	92.8(4)	N(412)-Zn(4)-N(442)	121.3(3)
4			
Co(1)-O(1)	2.0374(19)	Co(1)-N(2)	2.092(2)
Co(1)-O(4)#2	2.2171(19)	Co(2)-O(2)	1.978(2)
Co(2)-O(5)#4	2.027(2)	Co(2)-N(4)#5	2.044(2)
Co(2)-O(4)#3	2.0886(18)	Co(2)-O(3)#3	2.2499(19)
O(1)#1-Co(1)-O(1)	180.000(1)	O(1)#1-Co(1)-N(2)	89.22(9)
O(1)-Co(1)-N(2)	90.78(9)	N(2)-Co(1)-N(2)#1	180.000(1)
O(1)#1-Co(1)-O(4)#2	88.83(8)	O(1)-Co(1)-O(4)#2	91.17(8)

N(2)-Co(1)-O(4)#2	87.66(8)	N(2)#1-Co(1)-O(4)#2	92.34(8)
O(1)#1-Co(1)-O(4)#3	91.17(8)	O(1)-Co(1)-O(4)#3	88.83(8)
N(2)-Co(1)-O(4)#3	92.34(8)	N(2)#1-Co(1)-O(4)#3	87.66(8)
O(4)#2-Co(1)-O(4)#3	180.000(1)	O(2)-Co(2)-O(5)#4	96.89(9)
O(2)-Co(2)-N(4)#5	103.93(10)	O(5)#4-Co(2)-N(4)#5	99.85(9)
O(2)-Co(2)-O(4)#3	100.89(8)	O(5)#4-Co(2)-O(4)#3	149.60(8)
N(4)#5-Co(2)-O(4)#3	99.52(9)	O(2)-Co(2)-O(3)#3	157.23(9)
O(5)#4-Co(2)-O(3)#3	96.58(8)	N(4)#5-Co(2)-O(3)#3	91.71(9)
O(4)#3-Co(2)-O(3)#3	59.63(7)		
5			
Co(1)-O(1)	1.9714(19)	Co(1)-O(3)#1	1.9858(16)
Co(1)-N(12)	2.016(2)	Co(1)-N(42)	2.007(2)
O(1)-Co(1)-O(3)#1	100.50(6)	O(1)-Co(1)-N(12)	113.53(10)
O(1)-Co(1)-N(42)	117.79(9)	O(3)#1-Co(1)-N(12)	114.30(9)
O(3)#1-Co(1)-N(42)	101.08(9)	N(12)-Co(1)-N(42)	108.88(9)
6			
Ni(1)-O(1)	2.1121(15)	Ni(1)-O(2)	2.1221(15)
Ni(1)-O(7)#1	2.1348(13)	Ni(1)-O(8)#1	2.0958(14)
Ni(1)-N(112)	2.0178(16)	Ni(1)-N(442)	2.0402(16)
Ni(2)-O(3)#2	2.1709(13)	Ni(2)-O(4)#2	2.0851(14)
Ni(2)-O(5)	2.0715(15)	Ni(2)-O(6)	2.1695(15)
Ni(2)-N(142)	2.0286(16)	Ni(2)-N(212)#3	2.0471(17)
Ni(3)-O(9)	2.1158(15)	Ni(3)-O(10)	2.1237(15)
Ni(3)-O(13)	2.0713(14)	Ni(3)-O(14)	2.1741(13)
Ni(3)-N(242)	2.0384(16)	Ni(3)-N(312)	2.0189(18)
Ni(4)-O(11)	2.1364(13)	Ni(4)-O(12)	2.1160(14)
Ni(4)-O(15)	2.1656(15)	Ni(4)-O(16)	2.0713(15)
Ni(4)-N(342)#1	2.0325(18)	Ni(4)-N(412)	2.0476(17)
O(1)-Ni(1)-O(2)	62.18(5)	O(1)-Ni(1)-O(7)#1	94.75(5)
O(1)-Ni(1)-O(8)#1	151.33(5)	O(1)-Ni(1)-N(112)	101.65(6)
O(1)-Ni(1)-N(442)	100.29(6)	O(2)-Ni(1)-O(7)#1	89.46(5)
O(2)-Ni(1)-O(8)#1	98.83(5)	O(2)-Ni(1)-N(112)	163.31(6)
O(2)-Ni(1)-N(442)	92.93(6)	O(7)#1-Ni(1)-O(8)#1	62.02(5)

O(7)#1-Ni(1)-N(112)	87.78(5)	O(7)#1-Ni(1)-N(442)	164.07(6)
O(8)#1-Ni(1)-N(112)	94.39(6)	O(8)#1-Ni(1)-N(442)	102.05(6)
N(112)-Ni(1)-N(442)	94.24(6)	O(3)#2-Ni(2)-O(4)#2	61.38(5)
O(3)#2-Ni(2)-O(5)	95.32(5)	O(3)#2-Ni(2)-O(6)	88.41(5)
O(3)#2-Ni(2)-N(142)	88.08(6)	O(3)#2-Ni(2)-N(212)#3	162.59(6)
O(4)#2-Ni(2)-O(5)	151.38(5)	O(4)#2-Ni(2)-O(6)	98.61(5)
O(4)#2-Ni(2)-N(142)	94.40(6)	O(4)#2-Ni(2)-N(212)#3	101.28(6)
O(5)-Ni(2)-O(6)	62.07(5)	O(5)-Ni(2)-N(142)	101.60(6)
O(5)-Ni(2)-N(212)#3	100.70(6)	O(6)-Ni(2)-N(142)	162.86(6)
O(6)-Ni(2)-N(212)#3	93.07(6)	N(142)-Ni(2)-N(212)#3	95.28(6)
O(9)-Ni(3)-O(10)	62.10(5)	O(9)-Ni(3)-O(13)	151.43(5)
O(9)-Ni(3)-O(14)	95.53(5)	O(9)-Ni(3)-N(242)	101.80(6)
O(9)-Ni(3)-N(312)	101.92(6)	O(10)-Ni(3)-O(13)	98.66(5)
O(10)-Ni(3)-O(14)	89.63(5)	O(10)-Ni(3)-N(242)	92.78(6)
O(10)-Ni(3)-N(312)	163.68(6)	O(13)-Ni(3)-O(14)	61.57(5)
O(13)-Ni(3)-N(242)	99.95(6)	O(13)-Ni(3)-N(312)	94.78(6)
O(14)-Ni(3)-N(242)	161.51(6)	O(14)-Ni(3)-N(312)	88.66(6)
N(242)-Ni(3)-N(312)	93.98(6)	O(11)-Ni(4)-O(12)	61.60(5)
O(11)-Ni(4)-O(15)	88.91(5)	O(11)-Ni(4)-O(16)	95.19(5)
O(11)-Ni(4)-N(342)#1	87.43(6)	O(11)-Ni(4)-N(412)	165.24(6)
O(12)-Ni(4)-O(15)	98.77(5)	O(12)-Ni(4)-O(16)	151.40(5)
O(12)-Ni(4)-N(342)#1	94.02(6)	O(12)-Ni(4)-N(412)	103.71(6)
O(15)-Ni(4)-O(16)	62.06(5)	O(15)-Ni(4)-N(342)#1	163.06(6)
O(15)-Ni(4)-N(412)	92.23(6)	O(16)-Ni(4)-N(342)#1	101.81(6)
O(16)-Ni(4)-N(412)	98.35(6)	N(342)#1-Ni(4)-N(412)	95.50(7)
7			
Co(1)-O(1)	1.9868(17)	Co(1)-O(3)#1	1.9851(11)
Co(1)-N(112)	2.0398(14)	Co(1)-N(142)#2	2.0414(19)
O(1)-Co(1)-O(3)#1	132.77(7)	O(1)-Co(1)-N(112)	97.41(6)
O(1)-Co(1)-N(142)#2	120.23(6)	O(3)#1-Co(1)-N(112)	106.53(5)
O(3)#1-Co(1)-N(142)#2	93.91(6)	N(112)-Co(1)-N(142)#2	102.34(7)
8			
Co(1)-O(1)	1.9910(14)	Co(1)-O(3)	1.9931(13)

Co(1)-N(112)	2.0432(15)	Co(1)-N(142)	2.0058(19)
O(1)-Co(1)-O(3)	107.06(5)	O(1)-Co(1)-N(112)	98.51(6)
O(1)-Co(1)-N(142)	106.45(6)	O(3)-Co(1)-N(112)	99.42(6)
O(3)-Co(1)-N(142)	126.90(6)	N(112)-Co(1)-N(142)	114.84(6)
9			
Co(1)-O(1)	1.980(6)	Co(1)-O(3)#1	1.931(6)
Co(1)-N(12)	2.006(6)	Co(1)-N(42)#2	2.036(5)
O(1)-Co(1)-O(3)#1	107.6(2)	O(1)-Co(1)-N(12)	114.1(2)
O(1)-Co(1)-N(42)#2	96.3(2)	O(3)#1-Co(1)-N(12)	122.8(2)
O(3)#1-Co(1)-N(42)#2	99.6(2)	N(12)-Co(1)-N(42)#2	112.3(2)

Symmetry transformations used to generate equivalent atoms:

For 1: #1 -x+1,y,-z+1/2, #2 -x+1,-y+1,-z, #3 x,-y+1,z+1/2. For 2: #1 -x+1,y-1/2,-z+3/2, #2 -x,-y,-z+1. For 3: #1 -x+1,-y+1,-z+1, #2 -x+1,-y,-z, #3 x+1,y-2,z. For 4: #1 -x+3,-y+2,-z+1, #2 -x+4,-y+3,-z+1, #3 x-1,y-1,z, #4 x-1,y,z, #5 -x+3,-y+1,-z. For 5: #1 -x+1,-y,-z+1. For 6: #1 x-1,y,z, #2 x+1,y,z, #3 x,y,z-1. For 7: #1 x,-y+1/2+1,z+1/2-1, #2 -x+2,y+1/2,-z+1/2. For 9: #1 -x+1,-y+1,-z, #2 x-1,y,z-1.

D-H···A	$d(D \cdots A)$ (Å)	$\angle D$ -H····A (°)	
	Compound 1		
N1-H1A…O2#1	2.823(2)	163	
	Compound 2		
N2-H2A…O2#1	2.788(3)	164	
N4-H4····O3#2	2.792(3)	135	
C8-H8····O3#3	3.178(3)	126	
C12-H12····O2#4	3.257(3)	158	
C21-H21···O3#5	3.454(4)	155	
	Compound 3		
N111-H37…O4#1	2.860(11)	165	
N141-H40…O16#2	2.811(12)	159	
N211-H47…O10	2.656(10)	161	
N241-H50…O13#3	2.914(10)	151	
N311-H57…O12#4	2.727(11)	148	
N341-H60…O6#5	2.676(11)	157	
N411-H67…O2#6	2.885(10)	164	
N441-H70…O8	2.740(10)	152	
C25-H7…O14#7	3.147(12)	123	
С102-Н33…О4#1	3.324(10)	162	
C105-H35…O16#2	3.312(13)	141	
C142-H41O8#8	3.172(12)	139	
С402-Н63…О2#6	3.328(11)	161	
С412-Н68…О12	3.187(11)	131	
	Compound 4		
N1-H1A…O3#1	2.812(3)	155	
N3-H3B…O1W#2	2.827(4)	167	
C21-H21B····O1#3	3.162(4)	146	
Compound 5			
N11-H5…O4#1	2.864(4)	171	
N41-H8…O5#2	2.765(4)	162	
O5-H12····O4#1	2.861(3)	155(4)	

Table S2 Hydrogen bonding data for complexes 1-9.

O5-H13…O3#3	2.920(3)	159(4)
C5-H3····O2#4	3.308(4)	152
C13-H7…O4#5	3.171(4)	129
	Compound 6	
N111-H45…O13#1	2.747(2)	175
N141-H40····O12#1	2.793(2)	173
N211-H55…O17#1	2.656(10)	176
N241-H58…O1#2	2.874(2)	136
N311-H65…O4#3	2.723(2)	174
N341-H68…O8#4	2.813(2)	175
N411-H75…O18	3.149(4)	173
N411-H78…O9#5	2.848(2)	139
O17-H81····O19	2.859(4)	165(3)
O17-H82····O16#6	2.711(2)	149(4)
O18-H83····O23	2.860(5)	168(3)
O18-H84····O5#7	2.705(3)	145(4)
O19-H85…O20	2.868(4)	174(3)
O19-H86…O11#6	2.769(2)	141(3)
O20-H87…O9#6	2.810(3)	165(3)
O20-H88····O24	2.806(4)	163(3)
O22-H91…O1#1	2.802(3)	167(3)
O24-H95…O14#6	2.774(3)	154(3)
O24-H96…O17	3.082(4)	160(3)
C102-H41O13#1	3.374(2)	164
C103-H42…O12#1	3.326(2)	166
С105-Н43…О24	3.409(3)	163
C106-H44O19	3.302(3)	163
C206-H54…O17#1	3.427(3)	148
С305-Н63…О8#4	3.360(3)	165
C306-H64…O4#3	3.339(3)	164
C406-H74…O18	3.377(4)	146
	Compound 7	
N111-H15…O2#1	2.752(2)	169

N141-H18····O4#2	2.711(2)	169
С6-Н9…О3	3.086(2)	116
	Compound 8	
N111-H15…O6	2.750(3)	160
N141-H18····O4#1	2.750(2)	145
O5-H21…O1	2.904(3)	167(4)
O5-H22····O4#2	3.041(4)	173(3)
O6-H23····O2#3	2.782(3)	175(2)
O6-H24···O2#4	2.884(3)	167(4)
C143-H20····O5#5	3.206(4)	146
	Compound 9	
N11-H5…O4#1	2.784(9)	175
N41-H8…O6#1	2.898(9)	170
O5-H20···O2#2	2.630(8)	165(10)
C3-H2···O6#1	3.325(10)	171
С13-Н7…О1#3	3.203(10)	138
C43-H10····O1#4	3.383(10)	151

Symmetry transformations used to generate equivalent atoms: For 1: #1 1/2+x,3/2-y,1/2+z. For 2: #1 1-x,1/2+y,3/2-z; #2 -2+x,1/2-y,-1/2+z; #3 1-x,-1/2+y,3/2-z; #4 -x,-y,1-z; #5 2-x,-y,2-z. For 3: #1 -x,1-y,1-z; #2 1-x,2-y,-z; #3 -1+x,y,1+z; #4 x,-1+y,1+z; #5 x,-1+y,z; #6 1+x,y,-1+z; #7 1-x,-y,1-z; #8 -x,2-y,-z. For 4: #1 x,-1+y,z; #2 -1+x,y,z; #3 4-x,3-y,1-z. For 5: #1 x,1+y,z; #2 1-x,1-y,2-z; #3 1-x,1-y,1-z; #4 2-x,1-y,2-z; #5 1-x,-y,1-z. For 6: #1 1-x,1-y,1-z; #2 1-x,-1/2+y,3/2-z; #3 1+x,1/2-y,1/2+z; #4 x,1/2-y,1/2+z; #5 1-x,1/2+y,3/2-z; #6 x,1/2-y,-1/2+z; #7 1-x,-1/2+y,1/2-z. For 7: #1 1+x,3/2-y,1/2+z; #2 2-x,-1/2+y,3/2-z. For 8: #1 2-x,1-y,1-z; #2 -1+x,y,z; #3 x,-1+y,z; #4 2-x,1-y,-z; #5 1-x,1-y,1-z. For 9: #1 1+x,-1+y,z; #2 1-x,1-y,1-z; #3 1-x,-y,-z; #4 2-x,1-y,-z; #5 1-x,1-y,1-z. For 9: #1 1+x,-1+y,z; #2 1-x,1-y,1-z; #3 1-x,-y,-z; #4 2-x,1-y,-z; #5 1-x,1-y,1-z. For 9: #1 1+x,-1+y,z;

Fig. S1. 2D network of 1 linked by hydrogen bonds indicated by dashed line.

Fig. S2. The 3D structure of 2 linked by hydrogen bonds indicated by dashed lines.

Fig. S3. Polyhedral representations of the 3-connected BTA³⁻ ligand and 8-connected trinuclear SBU of **4**.

Fig. S4 The 3D structure of 6 linked by hydrogen bonds indicated by dashed lines.

Fig. S5 The 3D structure of 7 linked by hydrogen bonds indicated by dashed lines.

Fig. S6 The 3D structure of 9 linked by hydrogen bonds indicated by dashed lines.

Fig. S7 The TG curves of 1 - 9.

Fig. S8 PXRD patterns of 1 - 9: a - simulated; b - as-synthesized.