Supporting information for

Controlled transformation of ZnO nanobelts into CoO/Co₃O₄ nanowires Chan Woong Na,^a Hyung-Sik Woo,^a Hyo-Joong Kim,^a Unyong Jeong,^b Jae-Ho Chung,^c and Jong-Heun Lee*^a

^aDepartment of Materials Science and Engineering, Korea University, Seoul 136-713, Republic of Korea

Email: jongheun@korea.ac.kr ^bDepartment of Materials Science and Engineering, Yonsei University, 134 Shinchon-dong, Seoul, Republic of Korea ^cDepartment of Physics, Korea University, Seoul 136-713, Republic of Korea

Fig. S1 Morphologies and crystal structures of Zn doped Co_3O_4 NWs: (a) and (b) TEM images of Zn doped Co_3O_4 NWs; (c) EDS line-scanning of Co, Zn and O; (d) EDS spectrum of Zn containing Co_3O_4 NW

Fig. S2 (a) high-angle annular dark field (HAADF) scanning TEM (STEM) image of Co_3O_4 NW (b) EDS spectrum of Co_3O_4 NW

In order to distinguish between the Co_3O_4 and the $ZnCo_2O_4$, we measured the Raman scattering of the ZnO NBs, ZnO-ZnCo_2O_4 core-shell NCs and Co_3O_4 NWs (Fig. S3). ZnO NBs observed two Raman active peaks at 334.8 (A₁) and 442.1 cm⁻¹ (E₂).¹ The Co₃O₄ exhibits five Raman active peaks at 190.8 (F_{2g}), 478.6 (E_g), 519.2 (F_{2g}), 616.6 (F_{2g}), and 684.5 cm⁻¹ (A_{1g}).² For the Co₃O₄ spinel, Raman mode at 684.5 cm⁻¹ (A_{1g}) is attributed to characteristics of the octahedral sites and the E_g and F_{2g} modes are likely related to the combined vibrations of tetrahedral site and octahedral oxygen motions in Zn_yCo_{3-y}O₄.³ The E₂ (modes of ZnO-ZnCo₂O₄ core-shell NCs which are lower than that of ZnO NBs can be explained by the incorporation of Co into ZnO lattice.⁴ Relatively high intensities of E_g and F_{2g} modes compared to that of A_{1g} mode indicate that the ZnCo₂O₄ shell layer is formed by the incorporation of Zn components into Co₃O₄.

Fig.S3 Raman scattering of ZnO NBs, Co₃O₄ decorated ZnO NBs, ZnO-ZnCo₂O₄ coreshell NCs and Co₃O₄ NWs

Table S1. Peak position/fwhm/Area % values of the deconvoluted bands derived from the XPS Zn $2p_{3/2}$ peak, and peak position/fwhm of the XPS Co $2p_{3/2}$ peak, for the ZnO NWs, Co₃O₄-decorated ZnO NWs, ZnO-ZnCo₂O₄ core-shell NCs, Co₃O₄ NWs, and CoO NWs

	Zn 2 <i>p</i> _{3/2}				Co 2 <i>p</i> _{3/2}	
	band	position (eV)	fwhm (eV)	area (%)	Position (eV)	fwhm (eV)
ZnO NBs	Zn-O	1021.8	1.8	100		
Co ₃ O ₄ -decorated ZnO NBs	Zn-O	1021.8	1.8	80	779.6	~3.3
	Zn-Cn	1022.6	1.7	20		
ZnO-ZnCo ₂ O ₄ core-shell NCs	Zn-O	1021.8	1.8	75	779.6	~3.1
	Zn-Co	1022.7	1.5	25		
Co ₃ O ₄ NWs					779.8	~3
CoO NWs					780.5	~4

Reference

1. R. P. Wang, G. Xu, and P. Jin, Phys. Rev. B, 2004, 69, 113303

2. X. Wang, J. Xu, X. Yu, K. Xyu, J. Yu, and X. Zhao, Appl. Phys. Lett. 2007, 91, 031908

3. C. F. Windisch Jr., G. J. Exarhos, R. R. Owings, J. Appl. Phys., 2004, 95, 5435

4. K. Samanta, P. Bhattacharya, R. S. Katiyar, W. Iwamoto, P. G. Pagliuso, and C. Rettori, *Phys. Rev. B*, 2006, **73**, 245213