Supporting Information for the Manuscript:

A series of five divalent zinc and cadmium coordination polymers based on a new bifunctional ligand: syntheses, crystal structures, and properties
Can Ji, ${ }^{\text {a }}$ Bo Li, ${ }^{\text {a }}$ Ming-Li Ma, ${ }^{\text {a }}$ Shuang-Quan Zang, ${ }^{\text {a }}{ }^{\text {* }}$ Hong-Wei Hou ${ }^{\text {a }}$ and Thomas C. W. Mak ${ }^{\text {a,b }}$.
${ }^{\text {a }}$ The College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
${ }^{\mathrm{b}}$ Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P. R. China

Author for correspondence: Dr. S.-Q. Zang, E-mail: zangsqzg@zzu.edu.cn.

This PDF file includes Table S1- S2 and Fig. S1- S7.

Table S1. Hydrogen Bonds parameters in 1-3.
Table S2. Emission and excitation maxima wavelengths of 1-5.
Fig. S1. Top view of the open-ended, hollow nanotube of 4.
Fig. S2. TG curves for compounds 1-5.
Fig. S3 X-ray powder diffraction of complex 1 (a) simulated from single crystal data, (b) observed for complex 1.

Fig. S4 X-ray powder diffraction of complex 2 (a) simulated from single crystal data, (b) observed for complex 2.

Fig. S5 X-ray powder diffraction of complex 3 (a) simulated from single crystal data, (b) observed for complex 3.

Fig. S6 X-ray powder diffraction of complex 4 (a) simulated from single crystal data, (b) observed for complex 4.

Fig. S7 X-ray powder diffraction of complex 5 (a) simulated from single crystal data, (b) observed for complex 5.

Table1. Selected Hyrdogon-Bond Geometry (\AA) for 1-3 (in \AA and ${ }^{\circ}$)

D-H $\cdots \mathrm{A}$	$d(\mathrm{D} \cdots \mathrm{H})$	$d(\mathrm{H} \cdots \mathrm{A})$	$d(\mathrm{D} \cdots \mathrm{A})$	DHA
Compound $\mathbf{1}^{\text {a }}$				
$\mathrm{O}(3 \mathrm{~W})-\mathrm{H}(3 \mathrm{WA}) \ldots \mathrm{O}(1)$	0.85	1.87	2.718(5)	170.6
$\mathrm{O}(2 \mathrm{~W})-\mathrm{H}(2 \mathrm{WA}) \ldots \mathrm{O}(2) \# 4$	0.84	1.87	2.687(4)	164.9
$\mathrm{O}(1 \mathrm{~W})-\mathrm{H}(1 \mathrm{WB}) \ldots \mathrm{O}(2 \mathrm{~W}) \# 5$	0.84	1.92	2.713(5)	157.2
$\mathrm{O}(1 \mathrm{~W})-\mathrm{H}(1 \mathrm{WA}) \ldots \mathrm{O}(3 \mathrm{~W}) \# 6$	0.84	1.88	2.691(5)	162.2
Compound $\mathbf{2}^{\text {b }}$				
$\mathrm{O}(1 \mathrm{~W})-\mathrm{H}(1 \mathrm{WA}) \ldots \mathrm{O}(2 \mathrm{~W}) \# 4$	0.77	1.97	2.738(2)	172.1
$\mathrm{O}(1 \mathrm{~W})-\mathrm{H}(1 \mathrm{WB}) . . . \mathrm{O}(3 \mathrm{~W}) \# 5$	0.79	1.91	2.685(4)	167.5
$\mathrm{O}(2 \mathrm{~W})-\mathrm{H}(2 \mathrm{WA}) \ldots \mathrm{O}(2) \# 6$	0.84	1.87	2.691(3)	163.2
$\mathrm{O}(3 \mathrm{~W})-\mathrm{H}(3 \mathrm{WB}) \ldots \mathrm{O}(1)$	0.85	1.87	2.719(3)	179.6
$\mathrm{O}(3 \mathrm{~W})-\mathrm{H}(3 \mathrm{WA}) \ldots \mathrm{O}(1) \# 7$	0.85	1.96	2.738(3)	151.8
Compound $3^{\text {c }}$				
$\mathrm{O}(1 \mathrm{~W})-\mathrm{H}(1 \mathrm{WA}) \ldots \mathrm{Cl}(1) \# 6$	0.85	2.54	3.352(5)	159.4
$\mathrm{O}(1 \mathrm{~W})-\mathrm{H}(1 \mathrm{WB}) \ldots \mathrm{O}(2) \# 7$	0.85	2.04	2.834(5)	154.7
$\mathrm{O}(2 \mathrm{~W})-\mathrm{H}(2 \mathrm{WB}) \ldots \mathrm{O}(1 \mathrm{~W}) \# 8$	0.85	1.96	2.802(17)	170.2
$\mathrm{O}(2 \mathrm{~W})-\mathrm{H}(2 \mathrm{WA}) \ldots \mathrm{O}(1 \mathrm{~W}) \# 9$	0.85	2.31	2. 757(17)	113.0

Symmetry codes: ${ }^{a} \# 4-x+1 / 2,-y+1 / 2,-z+1$; \#5 $-x,-y+1,-z ; \# 6-x+1 / 2,-y+1 / 2,-z .{ }^{b} \# 4 x, y-1, z ; \# 5$ $x-1 / 2, y-1 / 2, z ; \# 6 x,-y+1, z+1 / 2 ; \# 7-x+1 / 2,-y+1 / 2,-z{ }^{c}{ }^{c} \# 6-x,-y+1,-z+1 ; \# 7-x+1,-y+1,-z+1 ; \# 8-x+1$, $y-1 / 2,-z+1 / 2 ; \# 9 x+1,-y+3 / 2, z+1 / 2$.

Table S2. Emission and excitation maxima wavelengths (nm)

polymer	HL	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
$\lambda_{\text {em }}(\mathrm{nm})$	451	436	413	481	449	468
$\lambda_{\text {ex }}(\mathrm{nm})$	370	375	314	382	365	369

Fig. S1 Top view of the open-ended, hollow nanotube of 4.

Fig. S2. The TG curves of complexes $\mathbf{1 - 5}$.

Fig. S3 X-ray powder diffraction of complex 1 (a) simulated from single crystal data, (b) observed for complex 1.

Fig. S4 X-ray powder diffraction of complex 2 (a) simulated from single crystal data, (b) observed for complex 2.

Fig. S5 X-ray powder diffraction of complex 3 (a) simulated from single crystal data, (b) observed for complex 3.

Fig. S6 X-ray powder diffraction of complex 4 (a) simulated from single crystal data, (b) observed for complex 4.

Fig. S7 X-ray powder diffraction of complex 5 (a) simulated from single crystal data, (b) observed for complex 5.

