Spontaneous resolution of a homochiral helix built from tetra-nuclear nickel cluster

Abstract

Wenxu Zheng, ${ }^{\text {ab }}$ Yongqin Wei, ${ }^{\text {a }}$ Chong-Bin TIan, ${ }^{\text {ab } X u e y i n g ~ X i a o, ~}{ }^{\text {ab }}$ and Kechen Wu ${ }^{\text {a }}$ ${ }^{\text {a }}$ State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China ${ }^{\mathrm{b}}$ Graduate School of Chinese Academy of Sciences, Beijing 100039, P. R. China. * The corresponding author, Tel: (+86)- 591-83792600; E-mail: wkc@fjirsm.ac.cn

Fig. S1. XPRD patterns for 1 (top, black) experimental at room temperature; (bottom, red) calculated on the basis of the structure determined by single-crystal X-ray diffraction.

(a)

(b)

Fig. S2. Coordination environment of $\mathrm{Ni}(\mathrm{II})$ (a) and bonding mode of $\mathbf{L}(\mathrm{b})$ in compound $\mathbf{1 P}$. The
bond length of Ni1—O5A is 2.152(2) Å. Symmetry code: A -x, $0.5+y,-0.5-z ; B 1-x,-0.5+y$, $0.5-z$. Guest water molecular and hydrogen atoms in pyridyl rings and coordination water molecules are omitted for clarity.

Table S1 Geometrical parameters of hydrogen bonds in 1P.

$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	$\mathrm{D}-\mathrm{H} / \AA$	$\mathrm{H} \cdots \mathrm{A} / \AA$	$\mathrm{D} \cdots \mathrm{A} / \AA$	$<\mathrm{DHA} /{ }^{\circ}$
$\mathrm{O}(1 \mathrm{~W})-\mathrm{H}(1 \mathrm{WA}) \ldots \mathrm{O}(4) \# 1$	0.82	2.05	$2.864(3)$	174.8
$\mathrm{O}(2 \mathrm{~W})-\mathrm{H}(2 \mathrm{WA}) \ldots \mathrm{O}(1) \# 2$	0.82	2.08	$2.868(4)$	162.1
$\mathrm{O}(3 \mathrm{~W})-\mathrm{H}(3 \mathrm{WA}) \ldots \mathrm{O}(13) \# 3$	0.82	2.01	$2.788(3)$	159.0
$\mathrm{O}(3 \mathrm{~W})-\mathrm{H}(3 \mathrm{WB}) \ldots \mathrm{O}(6) \# 4$	0.82	1.94	$2.701(3)$	153.0
$\mathrm{O}(4 \mathrm{~W})-\mathrm{H}(4 \mathrm{WA}) \ldots \mathrm{O}(12) \# 5$	0.82	1.87	$2.663(3)$	162.2
$\mathrm{O}(5 \mathrm{~W})-\mathrm{H}(5 \mathrm{WB}) \ldots \mathrm{O}(3) \# 2$	0.82	2.04	$2.800(3)$	154.2
$\mathrm{O}(5 \mathrm{~W})-\mathrm{H}(5 \mathrm{WA}) \ldots \mathrm{O}(16) \# 6$	0.82	1.90	$2.718(3)$	178.5
$\mathrm{O}(6 \mathrm{~W})-\mathrm{H}(6 \mathrm{WB}) \ldots \mathrm{O}(2 \mathrm{~W}) \# 7$	0.82	2.22	$3.000(3)$	158.9
$\mathrm{O}(7 \mathrm{~W})-\mathrm{H}(7 \mathrm{WA}) \ldots \mathrm{O}(10) \# 7$	0.82	2.08	$2.886(3)$	169.4
$\mathrm{O}(7 \mathrm{~W})-\mathrm{H}(7 \mathrm{WB}) \ldots \mathrm{O}(4 \mathrm{~W}) \# 8$	0.82	2.27	$2.848(3)$	128.2
$\mathrm{O}(8 \mathrm{~W})-\mathrm{H}(8 \mathrm{BA}) \ldots \mathrm{O}(7) \# 9$	0.82	2.31	$2.995(4)$	141.8

Symmetry code: \#1 x-1/2,-y+3/2,-z \#2 x-1/2,-y+1/2,-z \#3 x+1/2,-y+3/2,-z \#4 -x+3/2,-y+1,z-1/2
\#5 -x+2,y-1/2,-z+1/2 \#6 x+1/2,-y+1/2,-z \#7 -x+3/2,-y+1,z+1/2 \#8 -x+2,y+1/2,-z+1/2
\#9 -x+1,y+1/2,-z+1/2

Fig. S3. The TGA diagram of $\mathbf{1}$. The weight of 11.3 \% is corresponding to the loss of guest and coordinated water molecules.

