Electronic Supplementary Information

Self-Assembled Hollow Rare Earth Fluoride Alloyed Architectures with Controlled Crystal Phase and Morphology

Zhiming Chen,^{*a,b*} Qun Zhao,^{*a*} Guojin Feng,^{*c*} Zhirong Geng,^{*a*} and Zhilin Wang^{**a*}

^a State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China.

^b Department of Biochemical Engineering, Anhui Polytechnic University, Wuhu 241000, People's Republic of China.

^c Spectrophotometry Laboratory, National Institute of Metrology, Beijing 100013, People's Republic of China. *Corresponding author. Tel.:+86-25-83686082 Fax: +86-25-83317761 E-mail: <u>wangzl@nju.edu.cn</u>

Fig. S1 EDX analysis of $Eu_{0.95}Tb_{0.05}F_3$ hexagon-shaped sub-microcages.

Fig. S2 The LaMer diagram.

Fig. S3 FT-IR spectrum of Eu_{0.95}Tb_{0.05}F₃ hexagon-shaped sub-microcages.

Fig. S4 SEM and TEM images of the samples show the coarsening and morphological evolution of $(NH_4)_x Eu_{0.75}Tb_{0.25}F_{(3+x)}$ hollow sub-microspheres.

Fig. S5 TEM images of $Eu_{0.95}Ln_{0.05}F_3$ (Ln = Y, Gd, Dy, Ho, Er, and Tm) alloyed hexagon-shaped sub-microcages.

Fig. S6 TEM images of $EuF_3:Ln^{3+}/NH_4^+$ (Ln = Y, Gd, Dy, Ho, Er, and Tm) alloyed hollow sub-microspheres.

Fig. S7 XRD analysis of $EuF_{3:}Ln^{3+}$ and $EuF_{3:}Ln^{3+}/NH_4^+$ (Ln = Y, Gd, Dy, Ho, Er, and Tm) alloyed hollow architectures.

Fig. S8 Relevant energy levels and transitions involved in the cross-relaxation and energy-transfer processes in $EuF_3:Ln^{3+}$ and $EuF_3:Ln^{3+}/NH_4^+$ (Ln = Dy, Ho, Er, and Tm) alloyed hollow architectures.

Fig. S1 EDX spectra of $Eu_{0.95}Tb_{0.05}F_3$ hexagon-shaped sub-microcages with quantities of Eu, Tb and F at a ratio of 24.6/1.3/74.1.

Fig. S2 The LaMer diagram. C_s : solubility; C_{min} : minimum concentration for nucleation; C_{max} : maximum concentration for nucleation; I: prenucleation period; II: nucleation period; III: growth period.

Fig. S3 FT-IR spectrum of of $Eu_{0.95}Tb_{0.05}F_3$ hexagon-shaped sub-microcages. The wide band at 3100 ~ 3600 cm⁻¹ was assigned to hydrogen-bonded O-H stretching vibrations, the band at ~ 3019 cm⁻¹ was assigned to the asymmetric (vas) stretching vibrations of methylene (CH₂) in the EDTA. The bands at 1627 ~ 1690 cm⁻¹ was assigned to vas(OCO) asymmetric stretch vibrations. The band at ~ 1388 cm⁻¹ was assigned to C-N stretching modes, the bands at ~ 1307 cm⁻¹ can be assigned to δ (C-H) bending vibrations.

Fig. S4 SEM and TEM images of the samples, showing the coarsening and morphological evolution of $(NH_4)_x Eu_{0.75}Tb_{0.25}F_{(3+x)}$ hollow sub-microspheres, obtained in the starting solution with feed ratio of Eu/Tb (3/1, mol/mol), (a) without hydrothermal treatment, (b-d) at 110 °C for 1, 2 and 12 h, respectively, (e) and (f) for 24 h.

Fig. S5 TEM images of (a) $Eu_{0.95}Y_{0.05}F_3$ hexagon-shaped sub-microcages, (b) $Eu_{0.95}Gd_{0.05}F_3$ hexagon-shaped sub-microcages, (c) $Eu_{0.95}Dy_{0.05}F_3$ hexagon-shaped sub-microcages, (d) $Eu_{0.95}Ho_{0.05}F_3$ hexagon-shaped sub-microcages, (e) $Eu_{0.95}Er_{0.05}F_3$ hexagon-shaped sub-microcages and (f) $Eu_{0.95}Tm_{0.05}F_3$ hexagon-shaped sub-microcages.

Fig. S6 TEM images of (a) $(NH_4)_x Eu_{0.75}Y_{0.25}F_{(3+x)}$ hollow sub-microspheres with diameter of 165 \pm 25 nm, (b) $(NH_4)_x Eu_{0.5}Gd_{0.5}F_{(3+x)}$ hollow sub-microspheres with diameter of 195 \pm 15 nm, (c) $(NH_4)_x Eu_{0.75}Dy_{0.25}F_{(3+x)}$ hollow sub-microspheres with diameter of 195 \pm 15 nm, (d) $(NH_4)_x Eu_{0.75}Ho_{0.25}F_{(3+x)}$ hollow sub-microspheres with diameter of 160 \pm 20 nm, (e) $(NH_4)_x Eu_{0.75}Er_{0.25}F_{(3+x)}$ hollow sub-microspheres with diameter of 160 \pm 20 nm and (f) $(NH_4)_x Eu_{0.75}Tm_{0.25}F_{(3+x)}$ hollow sub-microspheres with diameter of 155 \pm 25 nm.

Fig. S7 XRD patterns of (a) $EuF_3:Y^{3+}$ and $EuF_3:Y^{3+}/NH_4^+$ alloyed hollow architectures, (b) $EuF_3:Gd^{3+}$ and $EuF_3:Gd^{3+}/NH_4^+$ alloyed hollow architectures, (c) $EuF_3:Dy^{3+}$ and $EuF_3:Dy^{3+}/NH_4^+$ alloyed hollow architectures, (d) $EuF_3:Ho^{3+}$ and $EuF_3:Ho^{3+}/NH_4^+$ alloyed hollow architectures, (e) $EuF_3:Er^{3+}$ and $EuF_3:Er^{3+}/NH_4^+$ alloyed hollow architectures and (f) $EuF_3:Tm^{3+}$ and $EuF_3:Tm^{3+}/NH_4^+$ alloyed hollow architectures. The reflections from the orthorhombic EuF_3 are marked by ∇ ; the reflections from the hexagonal EuF_3 are marked by ∇ ; the reflections from the cubic $NH_4Ln_3F_{10}$ are marked by *.

Fig. S8 Relevant energy levels and transitions involved in the cross-relaxation and energy-transfer processes in $EuF_3:Ln^{3+}$ and $EuF_3:Ln^{3+}/NH_4^+$ (Ln = Dy, Ho, Er, and Tm) alloyed hollow architectures.