Electronic Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry 2012

Supporting Information for

Supermolecular Interactions Induced Fluorescent Organic Nanowires with High Quantum Yield Based on 9,10-Distyrylanthracene

Yujie Dong, Bin Xu, Jibo Zhang, Hongguang Lu, Shanpeng Wen, Feipeng Chen, Jiating He, Bao Li, Ling Ye, Wenjing Tian*

State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China

E-mail: wjtian@jlu.edu.cn

Table of Contents:

- 1. Synthesis route of TMDSA, TFMDSA and TFDSA
- 2. FT-IR absorption spectra (KBr pellets) of TMDSA, TFMDSA and TFDSA.
- 3. PL spectra of TFMDSA and TFDSA at room temperature and 77 K.
- 4. PL spectra of TMDSA in DMF-glycerin mixtures.
- 5. Fluorescence images of four samples prepared by reprecipitation and evaporation process.
- 6. Crystal data and structure refinements of three crystals.

Electronic Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry 2012

Scheme S1. Synthesis route of TMDSA, TFMDSA and TFDSA

Synthesis

Synthesis of (1) 9,10-bis(dichloromethyl)anthracene.

A two-necked bottle (500 mL) was oven-dried, anthracene (18 g, 0.1 mol) was dissolved in 1,4-dioxane (144 ml) and HCl (24 mL). Paraformaldehyde (15.2 g) was added to the solution and the mixture was stirred for 2 h at 110 °C under HCl atmosphere. After removing the HCl atmosphere, the reaction went on stiring for 4 h at this temperature. The reaction mixture was cooled to room temperature and washed by 1,4-dioxane and neutralized by water to give compound as yellow powder 12.3 g (40% yield). ¹H NMR(500 MHz CDCl₃) δ 8.366-8.346 (m, 4H, Ar), 7.638-7.618 (m, 4H, Ar), 5.580 (s, 4H, CH₂).

Synthesis of (2) tetraethyl anthracene-9,10-diylbis(methylene)diphosphonate

Compound (1) (17 g, 50 mmol) was dissolved in $P(OC_2H_5)_3$ (86.5 ml, 0.5 mol). The reaction mixture was heated to 150 °C in an oil bath and stirred for 18 h at this temperature under N₂ atmosphere. After being cooled to room temperature, the reaction mixture was poured into petroleum ether and filtered to give 18 g of compound (2) as a light yellow solid (75% yield). ¹H NMR(500 MHz CDCl₃) δ

8.388-8.354 (m, 4H, Ar), 7.582-7.548 (m, 4H, Ar), 4.263-4.196 (d, 4H, CH₂), 3.931-3.777 (m, 8H, CH₂), 1.080-1.033 (t, 12H, CH₃).

Synthesis of 9,10-bis(3,5-dimethylstyryl)anthracene (TMDSA).

Compound tetraethylanthracene-9,10-diylbis(methylene)diphosphonate (0.600 g, 1.25 mmol) was stirred with Bu^tOK (0.421 g, 3.76 mmol) in THF (200 mL) under nitrogen. Compound 3,5-dimethylbenzaldehyde (0.38 mL, 2.84 mmol) in THF (50 mL) was added to the solution that was kept in an ice-bath and the mixture was stirred for 12 h at room temperature. The resultant precipitate was washed successively with MeOH and filtered off to give compound as yellow powder (75% yield). ¹H NMR (500 MHz, CDCl₃): δ 8.41-8.39 (m, 4H), 7.91 (d, *J* = 16.5 Hz, 2H), 7.48-7.46 (m, 4H), 7.02 (s, 2H), 7.02 (s, 2H), 6.89 (d, *J* = 16.5 Hz, 2H), 2.42 (s, 12H). ¹³C NMR (75 MHz, CDCl₃): 138.39 (s, Ar), 137.66 (s, Ar), 137.26 (s, Ar), 132.82 (s, Ar), 129.79 (s, Ar), 129.61 (s, Ar), 126.53 (s, CH=CH), 125.18 (s, CH=CH), 124.79 (s, Ar), 124.50 (s, Ar), 21.39 (s, CH₃). MALDI/TOF MS calcd for C₃₄H₃₀ 438.2, found 438.6. Anal. Calcd for C₃₄H₃₀: C, 93.11; H, 6.89. Found: C, 93.13; H, 6.87.

Synthesis of 9,10-bis(3,5-bis(trifluoromethyl)styryl)anthracene (TFMDSA).

TFMDSA was prepared according to the same procedure as that of **TMDSA** to give compound as yellow powder (55% yield). ¹H NMR (500 MHz, CDCl3): δ 8.35-8.33 (m, 4H), 8.12 (d, J = 16.5 Hz, 2H), 8.10 (s, 4H), 7.87 (s, 2H), 7.55-7.53 (m, 4H), 7.03 (d, J = 16.5 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃): 139.12 (s, Ar), 134.81 (s, Ar), 132.47-131.90 (m, CF₃), 129.44 (s, Ar), 129.24 (s, Ar), 126.37 (s, CH=CH), 126.35 (s, CH=CH), 126.12 (s, Ar), 125.91 (s, Ar), 121.43 (s, Ar), 29.71 (s, Ar). MALDI/TOF MS calcd for C₃₄H₁₈F₁₂ 654.1, found 653.8. Calcd for C₃₄H₁₈F₁₂: C, 62.39; H, 2.77; F, 34.83. Found: C, 62.35; H, 2.80; F, 34.84.

Synthesis of 9,10-bis(3,5-difluorostyryl)anthracene (TFDSA).

TFDSA was prepared according to the same procedure as that of **TMDSA** to give compound as yellow powder (65% yield). ¹H NMR (500 MHz, CDCl₃): δ 8.33-8.30 (m, 4H), 7.94 (d, *J* = 16.5 Hz, 2H), 7.52-7.48 (m, 4H), 7.18 (d, 4H), 6.85 (d, *J* = 16.5 Hz, 2H), 6.81 (m, 2H). ¹³C NMR (75 MHz, CDCl₃): 164.50-162.43 (dd, C-F), 140.51 (t, Ar), 135.53 (s, Ar), 132.02 (s, Ar), 129.45 (s, Ar), 127.86 (s, Ar), 126.20 (s, CH=CH), 125.68 (s, CH=CH), 109.27 (d, Ar), 103.25 (t, Ar). MALDI/TOF MS calcd for C₃₀H₁₈F₄ 454.1, found 454.5. Anal. Calcd for C₃₀H₁₈F₄: C, 79.29; H, 3.99; F, 16.72. Found: C, 79.28; H, 4.01; F, 16.71.

Electronic Supplementary Material (ESI) for CrystEngComm This journal is C The Royal Society of Chemistry 2012

Figure S1. FT-IR absorption spectra (KBr pellets) of TMDSA, TFMDSA and TFDSA. The arrows show the stretching peaks of the *trans*-double bond.

Figure S2. PL spectra of TFMDSA and TFDSA in THF solution at room temperature and 77 K at concentration of $\sim 10^{-5}$ M.

Figure S3. PL spectra of TMDSA in DMF-Water (a) and DMF-Glycerin (b) mixtures at concentration of $\sim 10^{-5}$ M.

Figure S4. Fluorescence images of DSA (a), TMDSA (b), TFMDSA (c) and TFDSA (d) prepared by reprecipitation process.

Figure S5. Fluorescence images of DSA (a), TMDSA (b), TFDSA (c) and TFMDSA (d) prepared by evaporation.

	TMDSA	TFDSA	TFMDSA
empirical formula	$C_{34}H_{30}$	$C_{30}H_{18}F_4$	$C_{34}H_{18}F_{12}$
formula wt	438.58	454.44	654.48
Т, К	293(2)	293(2)	293(2)
crystal system	monoclinic	triclinic	monoclinic
space group	P2(1)/c	P-1	P2(1)/c
a, Å	7.7071(15)	4.0152(8)	4.8750(10)
$b, \mathrm{\AA}$	30.672(6)	9.821(2)	13.857(3)
<i>c</i> , Å	5.2356(10)	13.736(3)	20.296(4)
a,deg	90.00	78.74(3)	90.00
β,deg	94.83(3)	86.02(3)	92.85(3)
γ,deg	90.00	84.26(3)	90.00
V,Å ³	1233.3(4)	527.88(18)	1369.4(5)
Ζ	2	1	2
density, mg/m ³	1.181	1.430	1.587
μ (Mo K α), mm^{-1}	0.066	0.107	0.149
heta range, deg	2.97-24.99	3.03-27.55	3.11-24.99
no.of reflcns collected	9431	4984	9672
no. of unique reflens	2172	2276	2377
R(int)	0.0665	0.0468	0.2914
GOF	1.010	1.077	0.934
$R_1 \left[I > 2\sigma(I) \right]$	0.0766	0.0610	0.0905
$wR_2 \left[I > 2\sigma(I)\right]$	0.2154	0.1623	0.1588
R_1 (all data)	0.1178	0.1147	0.3116
wR_2 (all data)	0.2451	0.1885	0.2568

Table S1: Crystal Data and Structure Refinements of Three Crystals