Electronic Supplementary Information for MS:

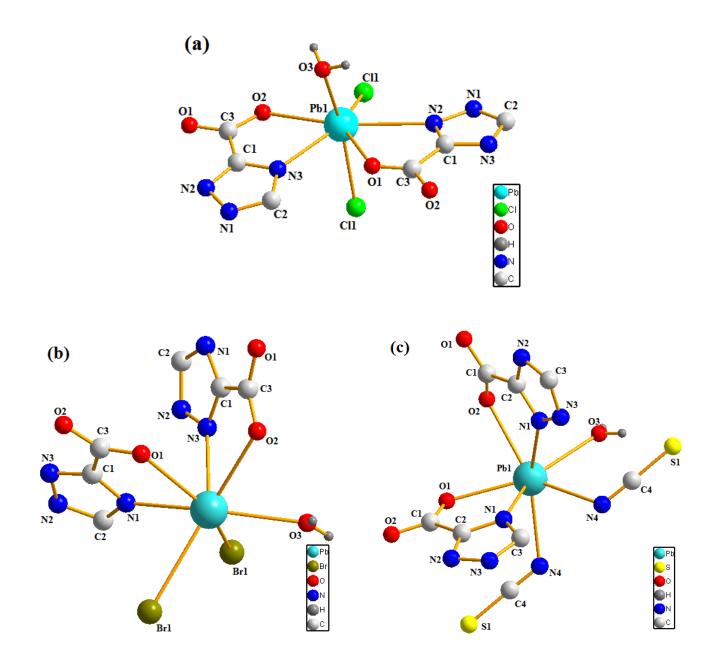
Mechanochemical solid-state transformations from a 3D lead(II) chloride triazole carboxylate coordination polymer to its bromide/thiocyanate analogs via anion-replacements; precursors for the preparation of lead(II) chloride/bromide/sulfide nanoparticles

Vahid Safarifard and Ali Morsali^{*}

Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Islamic Republic of Iran

‡ Experimental section:

Synthesis of coordination polymers 1, 2 and 3:


Crystals of **1** were prepared by a branched tube method,²⁰ 1H-1,2,4-triazole-3-carboxylic acid (0.117 g, 1 mmol), potassium chloride (0.074 g, 1 mmol) and lead(II) nitrate (0.331 g, 1 mmol) were placed in the arm to be heated. Water was carefully added to fill both arms, and then the arm to be heated was placed in a bath at 60 °C. After 3 days, colorless crystals were deposited in the cooler arm which were filtered off, washed with water and air dried. (0.21 g, yield 57%), m.p. >300 °C. (Found C, 9.88; H, 1.12; N, 11.47. calculated for C₃H₄ClN₃O₃Pb; C: 9.67, H: 1.08, N: 11.27%). IR (cm⁻¹) selected bands: 560(s), 663(s), 1094(s), 1302(m), 1468(m), 1595(vs), and 3407(br). The 3D [Pb(L)(μ_2 -Cl)(H₂O)]_n (**1**) polymerizes on grinding the solid with KBr and KSCN for 20 min in an agate mortar and pestle to form 3D coordination polymers, [Pb(L)(μ_2 -Br)(H₂O)]_n (**2**)^{19a} and [Pb(L)($\mu_{1,1}$ -NCS)(H₂O)]_n (**3**),²¹ respectively. These powder samples separated by washing. In the case of **2**, yield: 70% (m.p > 300 °C). Found C, 8.55; H, 0.99; N, 10.43. calculated for C₃H₄BrN₃O₃Pb; C: 8.63, H: 0.96, N: 10.07%. In **3**, yield: 64% (m.p > 300 °C). Found; (C, 12.22; H, 0.79; N, 14.25%. calcd. for C₄H₄N₄O₃PbS; C, 12.19; H, 0.77; N, 14.21%).

Synthesis of PbCl₂, PbBr₂ and PbS nanoparticles by thermal decomposition of coordination polymers 1, 2 and 3, respectively, at oleic acid as a surfactant:

Precursors 1-3 (0.1 mmol) were dispersed in oleic acid (1.35 ml) to form homogenous emulsion solutions. These solutions were degassed for 20 min and then heated to 200 °C for 2 h. At the end of the reaction, white precipitates for precursor 1-2 and black precipitates for precursor 3 were formed. A small amount of toluene and a large excess of MeOH were added to the all of three reaction solutions and PbCl₂, PbBr₂ and PbS nanoparticles were separated by centrifugation for the precursors 1, 2 and 3, respectively. The solids were washed with EtOH and dried under air atmosphere.

PbCl₂ with the lattice parameters (a = 7.6222(5) Å, b = 9.0448(7) Å, c = 4.5348(4) Å,

S.G. = Pnam (62) and z = 4); PbBr₂ with the lattice parameters (a = 8.062 Å, b = 9.5393 Å, c = 4.7348 Å, S.G. = Pnam (62) and z = 4); PbS with the lattice parameters (a = 5.9362 Å, S.G. = Fm3m (225) and z = 4)

Fig. S1 The coordination environments of the (a) compound $[Pb(L)(\mu_2-Cl)(H_2O)]_n$ (1) (b) compound $[Pb(L)(\mu_2-Br)(H_2O)]_n$ (2) and (c) compound $[Pb(L)(\mu_{1,1}-NCS)(H_2O)]_n$ (3).

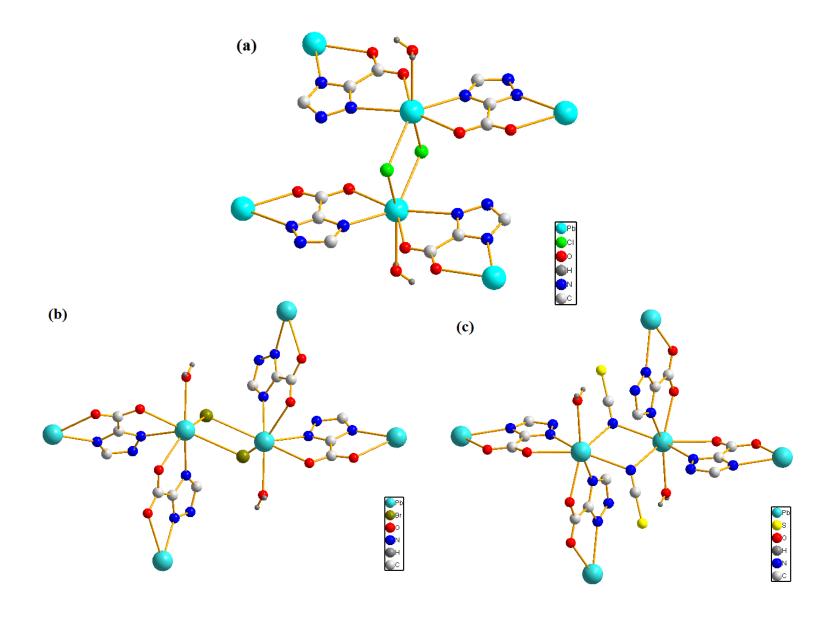


Fig. S2 (a) View of a section of the dimeric units by bridging of the Cl⁻ anions via one sides in 1 (b) View of a section of the dimeric units by bridging of the Br⁻ anions via one sides in 2 and (c) View of a section of the dimeric units by bridging of the NCS⁻ anions via one sides in 3.

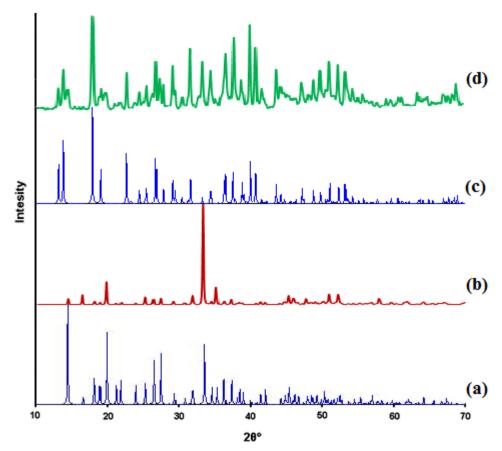


Fig. S3 The XRD patterns of (a) simulated from single crystal X-ray data of compound 1, (b) bulk materials as synthesized of compound 1, (c) simulated from single crystal X-ray data of compound 2 and (d) bulk materials obtained by solid state anion-replacement of compound 1.

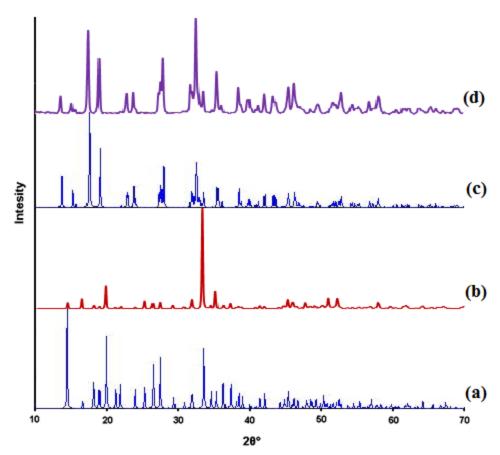
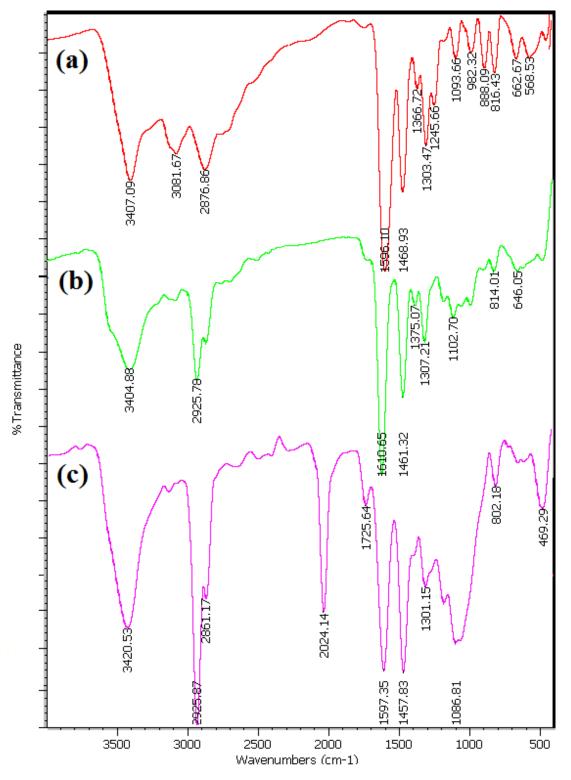



Fig. S4 The XRD patterns of (a) simulated from single crystal X-ray data of compound 1, (b) bulk materials as synthesized of compound 1, (c) simulated from single crystal X-ray data of compound 3 and (d) bulk materials obtained by solid state anion-replacement of compound 1.

Fig. S5 IR spectra of (a) compound **1**, (b) bulk materials obtained by solid state anion-replacement of compound **1** by grinding with KBr and (c) bulk materials obtained by solid state anion-replacement of compound **1** by grinding with KSCN.

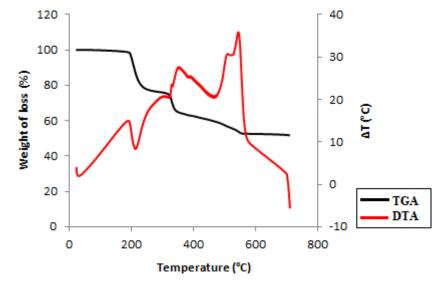


Fig. S6 Thermal behaviour of compound 1.

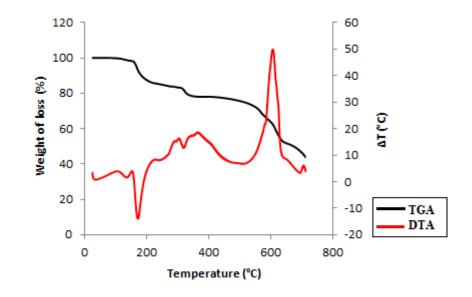


Fig. S7 Thermal behaviour of compound 2.

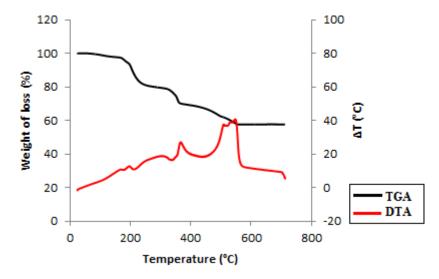


Fig. S8 Thermal behaviour of compound 3.

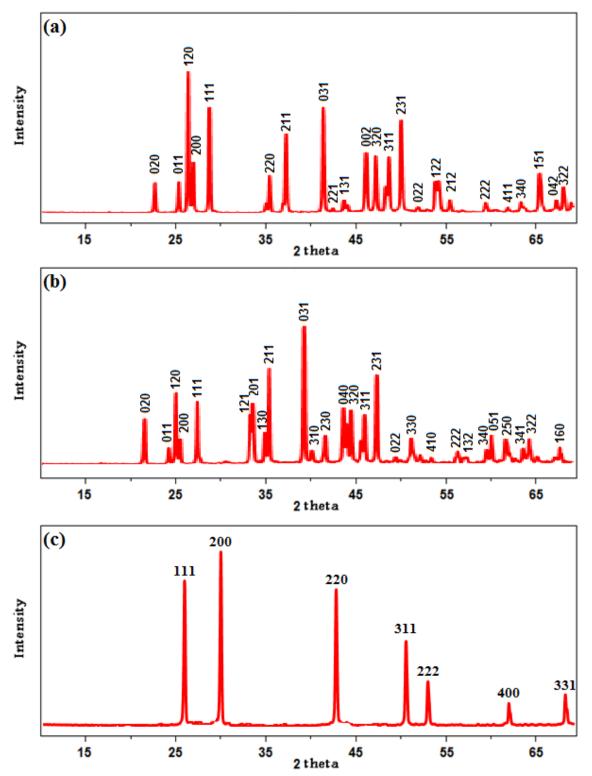


Fig. S9 XRD patterns of (a) $PbCl_2$, (b) $PbBr_2$ and (c) cubic-shaped PbS nanoparticles prepared by thermolysis of compounds 1, 2 and 3 in oleic acid at 200 °C under air atmosphere for 2 h, respectively