Electronic Supplementary Information (ESI)

Syntheses, crystal structures and properties of transition metal coordination polymers based on isophthalic acid and flexible bis(pyridyl) ligand with unsymmetrical spacer: influence of metal cations, ligand conformations and coordination modes[†]

Zhao-Peng Deng, Zhu-Yan Zhang, Li-Hua Huo, * Seik Weng Ng, Hui Zhao and Shan Gao *

Fig. S1 3-D hydrogen-bonding supramolecular network.

Fig. S2 3-D network extended by the C-H $\cdots\pi$ interactions (yellow dashed lines).

Fig. S3 3-D network linked by the interlayer C-H $\cdots \pi$ interactions with adjacent sheets packed in an

Fig. S4 1-D double chain along the [010] direction formed by the carboxyl groups linking Mn(II) cations.

Fig. S5 3-D network linked by the interlayer O-H…O hydrogen bonds.

Fig. S6 The 3-D network of complex 6 along the [100] direction with the

Fig. S7 Schematic illustrating of the tcb topology of complex 6 with the shortest six-membered rings denoted as blue lines and balls.

Fig. S8 2-D Layer motif in complex 8 formed by the L2 molecules linking [Zn₃(OH)₂] clusters.

Scheme S1 Coordination modes of ip dianions in the eight complexes.

PXRD Analysis. Powder X-ray diffraction (PXRD) patterns for solid samples of complexes **1-8** are measured at room temperature as illustrated in Fig. S9. The patterns are highly similar to their simulated ones (based on the single-crystal X-ray diffraction data), indicating that the single-crystal structures are really representative of the bulk of the corresponding samples.

Fig. S9 PXRD patterns for complexes 1-8.

Thermogravimetric analysis

To examine the thermal stability of the complexes, in this study, their stabilities were analyzed on crystalline samples by thermogravimetric analyses (TGA) from room temperature to 900 °C at a rate of 10 °C min⁻¹, under N₂ atmosphere. As shown in Fig. S10, the TGA curve indicates that complex 1 loses the lattice and coordinated water molecules from 50 to 157 °C with the observed weight loss of 8.24% (calcd 8.18%). The following gradually weigh losses correspond to the loss of the organic components occurs in the temperature range 265-870 °C. The remaining component corresponds to Mn_2O_3 (obsd 17.64%, calcd 17.93%). The weight loss corresponding to the release of the coordinated water molecules is observed from 70 to 180 °C (obsd 4.01%, calcd 4.23%) in complex 2. The following weight loss completes at 468 °C, leading to the formation of CoO as the residue (obsd 17.21%, calcd 17.58%). Complex 3 exhibits nearly one step loss with the decomposing of organic components occuring in the temperature range 230-650 °C, and the final remaining component is ZnO (obsd 19.82%, calcd 19.62%). The decomposing of organic components in complex 4 occurs between 304 and 730 °C with the remaining component being CdO (obsd 34.58%, calcd 34.79%). Complex 5 loses the free methanol and coordinated water molecules from 54 to 185 °C with the observed weight loss of 11.14% (calcd 11.02%). Then, the following weight loss with the decomposing of organic components occurs in the temperature range 348-864 $^{\circ}$ C, and the final remaining component is Mn₂O₃ (obsd 17.16%, calcd 17.37%). Complexes 6 and 7 exhibit the similar loss steps. The first step corresponds to the loss of lattice and coordinated water molecules in the temperature range 58-192 °C for 6 and 58-192 °C for 7 (obsd 8.01% for 6 and 8.08% for 7, calcd 8.11% for 6 and 7). Then, the following weight loss with the decomposing of organic components occurs in the temperature range 360-464 °C (complex 6) and 380-473 °C (complex 7), and the final remaining component corresponds to CoO (obsd 16.63%, calcd 16.86%) and NiO (obsd 17.06%, calcd 16.82%), respectively. Complex 8 also exhibits nearly one step loss with the decomposing of organic components occuring in the temperature range 202-524 °C, and the final remaining component is ZnO (obsd 26.37%, calcd 26.29%).

Fig. S10 TG curves of complexes 1-8.

Electronic Supplementary Information for CrystEngComm

This journal is (c) The Royal Society of Chemistry 2012

	Table S1 Selected bond	l lengths (Å) data of comple	exes $1-8^a$		
		Complex 1			
Mn(1)-O(1)	2.127(5)	Mn(2)-O(5)	2.119(5)		
Mn(1)-O(2W)	2.160(5)	Mn(2)-O(3W)	2.123(5)		
Mn(1)-O(1W)	2.196(4)	Mn(2)-N(3)	2.204(6)		
$Mn(1)-O(4)^{i}$	2.269(5)	$Mn(2)-O(8)^{ii}$	2.240(5)		
Mn(1)-N(1)	2.273(7)	Mn(2)-N(4)	2.269(6)		
$Mn(1)-O(3)^{i}$	2.324(5)	$Mn(2)-O(7)^{ii}$	2.325(5)		
		Complex 2			
$Co(1)-O(3)^{i}$	2.089(6)	$Co(2)-O(8)^{i}$	2.044(6)		
Co(1)-O(1W)	2.087(6)	Co(2)-O(2W)	2.081(8)		
Co(1)-O(1)	2.130(6)	Co(2)-O(6)	2.111(6)		
Co(1)-O(2)	2.166(6)	Co(2)-N(4)	2.199(8)		
$Co(1)-N(3)^{ii}$	2.186(8)	Co(2)-N(6) ⁱⁱ	2.200(7)		
Co(1)-N(1)	2.240(7)	Co(2)-O(5)	2.208(6)		
		Complex 3			
$Zn(1)-O(3)^{i}$	1.983(2)	$Zn(1)-N(3)^{ii}$	2.010(2)		
Zn(1)-O(1)	1.9882(19)	Zn(1)-N(1)	2.054(2)		
		Complex 4			
Cd(1)-O(1)	2.240(3)	Cd(2)-O(6)	2.234(3)		
$Cd(1)-O(3)^{i}$	2.248(3)	$Cd(2)-O(8)^{i}$	2.254(3)		
Cd(1)-O(5)	2.317(3)	$Cd(2)-O(4)^{iii}$	2.307(3)		
$Cd(1)-O(7)^{ii}$	2.342(3)	Cd(2)-O(2)	2.316(3)		
Cd(1)-N(1)	2.405(4)	$Cd(2)-N(3)^{iv}$	2.360(4)		
$Cd(1)-O(4)^{i}$	2.540(3)	$Cd(2)-O(7)^{i}$	2.583(3)		
Complex 5					
$Mn(1)-O(4)^{i}$	2.129(2)	Mn(1)-N(1)	2.244(3)		
$Mn(1)-O(3)^{ii}$	2.146(2)	Mn(1)-O(1)	2.262(2)		
Mn(1)-O(1W)	2.214(2)	$Mn(1)-N(3)^{iii}$	2.277(3)		
Complex 6					
Co(1)-O(3)	1.995(2)	Co(1)-O(2)	2.155(2)		
Co(1)-O(1W)	2.026(3)	Co(1)-N(1)	2.167(3)		

$Co(1)-N(3)^{i}$	2.134(3)	Co(1)-O(1)	2.201(3)
		Complex 7	
Ni(1)-O(3)	1.987(3)	$Ni(1)-N(3)^{i}$	2.112(3)
Ni(1)-O(1W)	2.019(4)	Ni(1)-O(2)	2.149(2)
Ni(1)-N(1)	2.145(3)	Ni(1)-O(1)	2.195(3)
		Complex 8	
Zn(1)-O(9)	1.873(4)	Zn(2)-O(2)	2.128(4)
Zn(1)-O(5)	1.966(4)	Zn(2)-N(4)	2.318(5)
Zn(1)-O(1)	1.996(4)	$Zn(2)-N(6)^{i}$	2.517(6)
Zn(1)-N(1)	2.062(5)	Zn(3)-O(10)	1.873(4)
Zn(1)-O(6)	$2.728(5)^{b}$	$Zn(3)-O(3)^{ii}$	1.956(4)
Zn(2)-O(9)	1.976(4)	Zn(3)-O(8)	1.981(4)
Zn(2)-O(10)	1.987(4)	$Zn(3)-N(3)^{iii}$	2.082(5)
Zn(2)-O(7)	2.119(4)		

^{*a*} Symmetry operations: **For 1**, i x+1,y,z; ii x-1,y,z. **For 2**, i x-1,y,z-1; ii x+1,y,z. **For 3**, i x,y+1,z; ii x+1,y,z. **For 4**, i x+1/2,-y+1/2,z+1/2; ii -x+1,-y,-z+1; iii -x+1,-y+1,-z+1; iv x+1,y,z. **For 5**, i -x+1,-y+1,-z; ii x,y-1,z; iii x+1,y+1,z. **For 6**, i x-1,-y+3/2,z-1/2. **For 7**, i x-1,-y+3/2,z-1/2. **For 8**, i -x+3/2,y+1/2,z-1/2; ii x+1/2,-y+3/2,z+1/2; iii -x+3/2,y-1/2,z+3/2.

 b Zn(1)-O(6) is a longer contact, which also has been indicated in the main text.

D-H A	d(D-H)	d(H A)	d(D A)	<(DHA)
	Complex 1	G(111)	G(D1)	
$O(1W) U(1W1) O(0)^{iii}$		2.00	2.020(6)	150 1
O(1W)-H(1W1)O(8)	0.82	2.09	2.838(6)	152.1
O(1W)-H(1W2)O(5) ¹	0.82	2.00	2.744(7)	151.5
$O(2W)-H(2W1)O(7)^{v}$	0.82	2.24	3.047(6)	169.4
O(2W)-H(2W2)N(6) ^{vi}	0.82	1.94	2.750(8)	168.9
O(3W)-H(3W1)O(2) ^{vii}	0.82	1.92	2.736(7)	178.7
O(3W)-H(3W2)O(4W)	0.82	1.86	2.684(7)	177.3
O(4W)-H(4W1)O(4) ^{vii}	0.82	1.84	2.661(7)	177.9
O(4W)-H(4W2)O(6)	0.82	1.89	2.711(8)	177.9
N(2)-H(2N)O(1)	0.86(9)	2.12(9)	2.976(9)	175(8)
N(5)-H(5N)O(6) ^{viii}	0.86(9)	2.50(5)	3.245(10)	145(7)
O(1W)-H(1W1)O(8) ⁱⁱⁱ	0.82	2.09	2.838(6)	152.1
	Complex 2			
O(1W)-H(1W1)O(4) ⁱ	0.82	1.84	2.661(8)	174.1
O(1W)-H(1W1)O(3) ⁱ	0.82	2.49	3.022(9)	123.6
O(1W)-H(1W2)O(5) ^{iv}	0.82	2.00	2.818(9)	174.4
O(2W)-H(2W1)O(7) ⁱ	0.85(5)	1.82(4)	2.629(9)	157(9)
O(2W)-H(2W2)N(4)	0.85(5)	2.61(10)	3.010(10)	110(8)
N(2)-H(2N)O(3) ⁱ	0.86	2.11	2.897(11)	152.6
N(5)-H(5N)O(8) ⁱ	0.86	2.11	2.873(11)	147.8
	Complex 3			
N(2)-H(2N)O(1)	0.854(10)	2.170(12)	3.011(3)	168(3)
	Complex 4			
N(2)-H(2N)O(7) ⁱⁱ	0.86	2.23	3.075(6)	168.2
	Complex 5			
N(2)-H(2N)O(1) ^{vi}	0.86(4)	2.340(16)	3.172(4)	162(3)
O(1W)-H(1W1)O(2)	0.85(3)	1.766(13)	2.599(3)	166(4)
O(1W)-H(1W2)O(5) ^{vii}	0.86(4)	1.941(12)	2.790(4)	173(4)

Table 2 Hydrogen bond parameters for complexes $1-8^a$

O(5)-H(5O)O(2) ^{viii}	0.86(5)	2.052(12)	2.906(5)	176(6)
	Comple	ex 6		
O(1W)-H(1W2)O(1) ^v	0.85(4)	2.07(6)	2.643(4)	124(5)
O(1W)-H(1W1)O(4) ^v	0.85(4)	1.83(4)	2.653(4)	162(5)
O(2W)-H(2W2)O(2)	0.85	2.16	2.994(9)	169.1
O(2W)-H(2W1)O(4) ^v	0.85	2.19	3.031(9)	169.1
	Comple	ex 7		
O(1W)-H(1W1)O(1) ^v	0.85	1.79	2.639(4)	173.4
O(1W)-H(1W2)O(4) ^v	0.85	1.79	2.640(5)	173.1
O(2W)-H(2W1)O(2)	0.85	2.14	2.977(9)	169.2
O(2W)-H(2W2)O(4) ^v	0.85	2.17	3.006(10)	169.3
	Comple	ex 8		
O(9)-H(9O)O(4) ^{ix}	0.85(4)	2.06(4)	2.826(6)	150(6)
O(10)-H(10O)O(6) ^x	0.85(4)	2.08(3)	2.858(6)	152(6)
^{<i>a</i>} Symmetry operations: Fo	or 1 , iii -x+2,-y+1,-z	z+1; iv -x+1,-y+1,-z	z+1; v -x+2,-	-y,-z+1; vi
x+1,y-1,z-1; vii -x+1,-y,-z	+1; viii -x+1,-y+1,-	z+2. For 2, i x-1,y	z-1; iv x-1,y	,z. For 4
ii -x+1,-y,-z+1. For 5,	vi -x,-y,-z; vii x	+1,y,z; viii -x+1,-	-y+1,-z+1.]	For 6, v
x,-y+3/2,z+1/2. For 7 , v x,	-y+3/2,z+1/2. For 8	B , ix x+1/2,-y+3/2,z	-1/2; x x,y,z-	+1.