Supporting Information

Remarkable solvent-size effects in constructing novel porous 1,3,5-benzenetricarboxylate metal-organic frameworks

Xiang-Rong Hao,^{a,b} Xin-Long Wang,^a Kui-Zhan Shao,^a Guang-Sheng Yang,^a Zhong-Min Su,^{*a} Gang Yuan.^a

Institute of Functional Materials, College of Chemistry, Northeast Normal University, Changchun 130024, China. Email: <u>zmsu@nenu.edu.cn</u>

Compound	1	1'*	1′′*	2	2'*	4	4′*
Chemical formula	Zn ₂ (C ₉ H ₃ O ₆)(N O ₃)(C ₄ H ₉ NO) ₃	$\frac{\operatorname{Zn}_2(\operatorname{C}_9\operatorname{H}_3\operatorname{O}_6)(}{\operatorname{NO}_3)}{}^{\bullet}5(\operatorname{C}_2\operatorname{H}_5\operatorname{OH})$	Mg ₂ (C ₉ H ₃ O ₆)(CH ₃ COO) •3(C ₄ H ₉ NO)($\frac{\text{Zn}_{11}(\text{C}_9\text{H}_3\text{O}_6)_6}{(\text{NO}_3)_4(\text{C}_6\text{H}_{13}\text{N}_{13}\text{N}_{13})_6}$	$\begin{array}{c} C_{155 \bullet 17} H_{36} N_8 \\ O_{98} Zn_{22} \end{array}$	ZnC9H3O6• C4H9NO •C2H9N	ZnC ₉ H ₃ O ₆ • C ₃ H ₇ NO •C ₂ H ₈ N
		•H ₂ O	$H_2O)$	O)y		021181	021181
Formula Mass	661.23	648.22	576.14	3246.36	5018.10	405.70	391.67
Crystal system	Orthorhombic	Orthorhombic	Orthorhombic	Cubic	Cubic	Monoclinic	Monoclinic
a/Å	12.935(5)	14.728(4)	12.537(5)	20.573(5)	20.4582(13)	9.320(5)	9.4550(6)
$b/{ m \AA}$	14.708(5)	14.728(4)	14.977(5)	20.573(5)	20.4582(13)	16.107(5)	16.0074(11)
$c/{ m \AA}$	15.359(5)	14.728(4)	15.404(6)	20.573(5)	20.4582(13)	12.608(5)	11.0347(7)
$\alpha/^{\circ}$	90.000(5)	90.000(5)	90.00	90.000(5)	90.00	90.000(5)	90.000(5)
$eta /^{\circ}$	90.000(5)	90.000(5)	90.00	90.000(5)	90.00	100.942(5)	98.4660(10)
$\gamma^{\prime \circ}$	90.000(5)	90.000(5)	90.00	90.000(5)	90.00	90.000(5)	90.000(5)
Unit cell volume/Å ³	2922.0(18)	3195(2)	2892.3(18)	8707(4)	8562.5(9)	1858.3(14)	1651.90(19)
Temperature/K	293(2)	293(2)	213(2)	293(2)	173(2)	293(2)	293(2)
Space group	P212121	P213	P212121	Pm3 m	Pm3 m	P21/n	P21/n
Ζ	4	4	4	1	1	4	4
No. of reflections	14745		9123	44723	14454	9299	
measured							
No. of independent	5143		3725	1582	740	3281	
reflections							
R _{int}	0.0360		0.0224	0.1422	0.0359	0.0630	
Final R_I values ($I >$	0.0383		0.0599	0.1016	0.1278	0.0486	
$2\sigma(I)$ ^a							
Final $wR(F^2)$ values ($I >$	0.0995		0.1517	0.2972	0.3523	0.1101	
$2\sigma(I)$							
Final R_I values (all	0.0468		0.0704	0.1762	0.1423	0.0874	
data)							
Final $wR(F^2)$ values (all	0.1063		0.1628		0.3648	0.1269	
data)							

Table S1 Crystallographic data of the compound 1, 1', 1", 2, 2' and 4, 4'

^a $R1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$. * compound 1', 1'', 2' and 4' have been reported previously.

	DMF	DMA	DEE	DEP	DPE	DPP
btc-Zn / Method I	1′*	1	2	3	Х	Х
btc-Zn / Method II	4′*	4 , 5 6 [#] ,	6 [#] , 7	Х	Х	Х

* 1' and 4' have been reported previously. 1' is prepared in alcohol. $^{\#}6$ was first obtained in a mixture of DMA and DEE (3:1 v/v) solvent, it also can obtained DMA solvent occasionally. Symbol "X" indicates no single crystal samples suitable for measuring can be obtained.

Fig. S1 A view of frameworks 1-7 showing the different pore size introduced by solvents and breathing phenomenon.

PXRD analysis:

Fig. S2. PXRD patterns for **1**: the calculated X-ray crystal structure (red), experimental XRPD pattern (black) and difference (green) of the bulk material.

Fig. S3. PXRD patterns for **2**: the calculated X-ray crystal structure (red), experimental XRPD pattern (black) and difference (green) of the bulk material.

Fig. S4. PXRD patterns for **3**: the calculated X-ray crystal structure (red), experimental XRPD pattern (black) and difference (green) of the bulk material.

Fig. S5. PXRD patterns for the bulk of **4** (or **5**) present a mixed-phase characterization: the calculated X-ray crystal structure of **4** (red), the calculated X-ray crystal structure of **5** (blue), the experimental XRPD pattern (black) showing that the bulk probably is a mixture of **4** and **5**.

Fig. S6. PXRD patterns for **5**: (a) simulated from single-crystal X-ray diffraction data, (b) as-synthesized solids, (c) after the ammonium acetate added in dmso-D6.

IR analysis:

Fig. S16. FT-IR spectrum of as-synthesized -1.

Fig. S17. FT-IR spectrum of as-synthesized -2.

Fig. S19. FT-IR spectrum of as-synthesized -4.

Fig. S20. FT-IR spectrum of as-synthesized -5.

.Fig. S21. FT-IR spectrum of as-synthesized -6

Fig. S22. FT-IR spectrum of as-synthesized -7

TGA analysis:

Fig. S23. TG curve of **2**.

Fig. S24. TG curve of 3

Fig. S25. TG curve of 4

Fig. S26. TG curve of 5

Fig. S27. TG curve of 6

Fig. S28. TG curve of 7

The coordinates for idealized net computed with Systre

(Compounds 5, 6 and 7)

CRYSTAL

NAME "Compound 5 (3,3,4,5)-c trans [45]" GROUP R-3c:H CELL 7.91537 7.91537 2.73089 90.0000 90.0000 120.0000 NODE 1 3 0.12080 0.18671 0.07543 NODE 3 5 0.00000 0.16359 0.25000 NODE 2 3 0.28992 0.00000 0.25000 NODE 4 4 0.00000 0.24902 0.75000 EDGE 0.00000 0.16359 0.25000 -0.00000 0.28992 0.25000 EDGE 0.00000 0.24902 0.75000 0.06591 0.18671 0.57543 EDGE 0.28992 0.00000 0.25000 0.41765 0.08432 0.08333 EDGE 0.00000 0.16359 0.25000 0.12080 0.18671 0.07543 EDGE 0.00000 0.16359 0.25000 0.06591 0.18671 0.57543 # EDGE CENTER 0.00000 0.22675 0.25000 # EDGE_CENTER 0.03296 0.21786 0.66271 # EDGE_CENTER 0.35379 0.04216 0.16667 # EDGE CENTER 0.06040 0.17515 0.16271 # EDGE_CENTER 0.03296 0.17515 0.41271 **END**

CRYSTAL

NAME "Compound 6 (3,4,6)-c trans [3222]; 6[6^6]+[6^12]" GROUP Im-3 CELL 3.77123 3.77123 3.77123 90.0000 90.0000 90.0000 NODE 2 6 0.25000 0.25000 0.25000 NODE 1 3 0.00000 0.18764 0.31263 NODE 3 4 0.00000 0.00000 0.50000 EDGE 0.00000 0.00000 0.50000 0.00000 0.18764 0.31263 EDGE 0.00000 0.18764 0.31263 0.25000 0.25000 0.25000 # EDGE_CENTER 0.00000 0.09382 0.40632 # EDGE_CENTER 0.12500 0.21882 0.28132 END

CRYSTAL

NAME "Compound 7 (3,3,3,5,6)-c trans [59]" GROUP Pnma CELL 2.86160 4.87780 2.88729 90.0000 90.0000 90.0000 NODE 5 3 0.29588 0.08602 0.27164 NODE 2 6 0.12278 0.56272 0.43712 NODE 4 3 0.01637 0.25000 0.53407 NODE 1 5 0.35973 0.25000 0.46964

NODE 3 3 0.44449 0.62084 0.34412

EDGE 0.29588 0.08602 0.27164 0.37722 0.06272 -0.06288 EDGE 0.01637 0.25000 0.53407 -0.12278 0.06272 0.56288 EDGE 0.01637 0.25000 0.53407 0.35973 0.25000 0.46964 EDGE 0.12278 0.56272 0.43712 0.44449 0.62084 0.34412 EDGE 0.12278 0.56272 0.43712 -0.12278 0.43728 0.56288 EDGE 0.29588 0.08602 0.27164 0.12278 -0.06272 0.43712 EDGE 0.12278 0.56272 0.43712 -0.05551 0.62084 0.15588 EDGE 0.35973 0.25000 0.46964 0.55551 0.12084 0.65588 EDGE 0.29588 0.08602 0.27164 0.35973 0.25000 0.46964 # EDGE_CENTER 0.33655 0.07437 0.10438 # EDGE_CENTER -0.05321 0.15636 0.54848 # EDGE_CENTER 0.18805 0.25000 0.50185 # EDGE_CENTER 0.28363 0.59178 0.39062 # EDGE_CENTER 0.00000 0.50000 0.50000 # EDGE_CENTER 0.20933 0.01165 0.35438 # EDGE_CENTER 0.03363 0.59178 0.29650 # EDGE_CENTER 0.45762 0.18542 0.56276 # EDGE_CENTER 0.32780 0.16801 0.37064 END