Tuning the architectures of polyoxometalate-templated complexes by changing the spacer lengths of bis-pyridyl-bis-amide ligands (L): From 1D chain to 2D networks based on different $(CuL)_n$ loops[†]

Xiuli Wang,* Chuang Xu, Hongyan Lin, Guocheng Liu, Song Yang, Qiang Gao and Aixiang Tian

Fig. S1 Two types of configurations of L¹ in **1**. Symmetry code: #1 - x + 1, -y + 1, -z + 3.

Fig. S2 The 1D chain based on the quadrate $Cu_2(L_a^1)_2$ loop and L_b^1 in **1**.

Fig. S3 Two types of configurations of L² in **2**. Symmetry code: #3 -x + 1/2, -y - 1/2, -z + 1; #4 -x + 1/2, -y + 1/2, -z + 1.

Fig. S4 The 1D chain based on the square $Cu_2(L_a^2)_2$ loop and L_b^2 in 2.

Fig. S5 Schematic illustration of the $1D \rightarrow 2D$ poly-rotaxane network in 2.

Fig. S6 The supramolecular interaction in compound 2.

Fig. S7 The coordination environment of the Cu^{II} ion in **3**. All H atoms and lattice water molecules are omitted for clarity. Symmetry code: #1 - x + 1/2, -y + 1/2, -z + 1.

Fig. S8 Two types of configurations of L^3 in **4**. Symmetry code: #4 - x - 3, -y, -z - 1.

Fig. S9 The 2D network of 4.

Fig. S10 The schematic view of $SiMo_{12}$ anions sandwiched by adjacent stagger-packed 2D layers in 4.

Fig. S11 The supramolecular interaction in compound 4.

Fig. S12 The coordination environment of the Cu^{II} ions in **5**. All H atoms and lattice water molecules are omitted for clarity. Symmetry code: #1 - x - 1, -y + 1, -z; #2 - x + 2, -y, -z + 1

Fig. S14 The TG curves of compounds 1–5.

Fig. S15 The dependence of cathodic peak and anodic peak currents on scan rates of 1–CPE and

3–CPE.

Fig. S16 Absorption spectra of the MB solution during the decomposition reaction under UV light irradiation with the use of 1, 4, 5 and without catalyst.

Compound 1					
Cu(1)–O(1W)	2.004(10)	Cu(1)–N(5)	2.004(11)		
Cu(1)–N(2)#1	2.024(11)	Cu(1)–N(1)	2.058(11)		
Cu(1)-O(2W)#1	2.728(10)	Cu(1)-O(3W)#1	2.525(10)		
O(1W)–Cu(1)–N(5)	171.2(4)	O(1W)-Cu(1)-N(2)#1	90.0(4)		
N(5)-Cu(1)-N(2)#1	91.1(4)	O(1W)-Cu(1)-N(1)	87.8(4)		
N(5)-Cu(1)-N(1)	91.7(4)	N(2)#1-Cu(1)-N(1)	175.6(4)		
O(2W)#1-Cu(1)-N(5)	89.5(4)	O(2W)#1-Cu(1)-N(2)#1	94.5(4)		
O(2W)#1-Cu(1)-O(3W)#1	169.5(4)	O(2W)#1-Cu(1)-O(1W)	81.6(4)		
O(2W)#1-Cu(1)-N(1)	88.7(4)	O(3W)#1-Cu(1)-N(5)	100.1(4)		
O(3W)#1-Cu(1)-N(2)#1	89.1(4)	O(3W)#1-Cu(1)-N(1)	87.1(4)		
O(3W)#1-Cu(1)-O(1W)	88.6(4)				

Symmetry code for $1: #1 - x + 1$,	-y + 1, -z + 3						
Compound 2							
N(1)–Cu(1)	2.028(9)	N(3)–Cu(1)	2.042(8)				
N(5)–Cu(1)	2.043(9)	O(3W)–Cu(1)	2.019(8)				
O(1W)–Cu(1)	2.502(9)	O(2W)–Cu(1)	2.551(8)				
O(3W)–Cu(1)–N(1)	179.1(3)	O(3W)–Cu(1)–N(5)	86.6(3)				
N(1)–Cu(1)–N(5)	94.3(3)	O(3W)-Cu(1)-N(3)	88.5(3)				
N(1)-Cu(1)-N(3)	90.6(3)	N(5)-Cu(1)-N(3)	174.8(4)				
O(3W)-Cu(1)-O(1W)	92.1(4)	N(1)-Cu(1)-O(1W)	87.9(4)				
N(5)-Cu(1)-O(1W)	91.5(4)	N(3)–Cu(1)–O(1W)	90.5(3)				
O(3W)–Cu(1)–O(2W)	89.4(4)	N(1)-Cu(1)-O(2W)	90.6(4)				
N(5)-Cu(1)-O(2W)	89.9(4)	N(3)-Cu(1)-O(2W)	88.3(3)				
O(1W)-Cu(1)-O(2W)	178.1(4)						
	Compor	und 3					
Cu(1)–O(3W)	2.025(12)	Cu(1)–N(1)	2.028(12)				
Cu(1)–N(5)	2.043(11)	Cu(1)–N(4)#1	2.053(12)				
Cu(1)–O(2W)	2.431(15)	Cu(1)–O(1W)	2.522(15)				
O(3W)–Cu(1)–N(1)	178.2(5)	O(3W)-Cu(1)-N(5)	89.7(5)				
N(1)-Cu(1)-N(5)	90.5(5)	O(3W)-Cu(1)-N(4)#1	85.8(5)				
N(1)-Cu(1)-N(4)#1	94.0(5)	N(5)-Cu(1)-N(4)#1	175.3(5)				
O(3W)-Cu(1)-O(2W)	89.9(6)	N(1)-Cu(1)-O(2W)	91.9(5)				
N(5)-Cu(1)-O(2W)	89.3(5)	N(4)#1-Cu(1)-O(2W)	89.2(5)				
N(5)-Cu(1)-O(1W)	89.3(5)	N(1)-Cu(1)-O(1W)	87.7(5)				
O(1W)-Cu(1)-O(2W)	178.6(5)	N(4)-Cu(1)-O(1W)	92.2(5)				
O(3W)–Cu(1)–O(1W)	90.5(5)						
Symmetry code for 3: $\#1 - x + 1/2$	2, -y + 1/2, -z + 1						
	Compo	und 4					
Cu(1)–N(6)#1	2.003(4)	Cu(1)–N(6)	2.003(4)				
Cu(1)-O(2W)#1	2.041(4)	Cu(1)–O(3W)#1	2.346(4)				
Cu(1)–O(3W)	2.346(4)	Cu(1)–O(2W)	2.041(4)				
Cu(2)–N(3)#2	1.950(7)	Cu(2)–N(2)	1.995(6)				
Cu(2)–N(2)#2	2.053(6)	Cu(2)–N(3)	2.176(7)				
N(6)#1-Cu(1)-N(6)	179.998(1)	N(6)#1-Cu(1)-O(2W)#1	90.16(17)				
N(6)-Cu(1)-O(2W)#1	89.84(17)	N(6)#1-Cu(1)-O(2W)	89.84(17)				
N(6)-Cu(1)-O(2W)	90.16(17)	O(2W)#1-Cu(1)-O(2W)	180.0				
N(6)#1-Cu(1)-O(3W)#1	88.62(17)	N(6)-Cu(1)-O(3W)#1	91.38(17)				
O(2W)#1-Cu(1)-O(3W)#1	89.52(18)	O(2W)-Cu(1)-O(3W)#1	90.48(18)				
N(6)#1-Cu(1)-O(3W)	91.39(17)	N(6)-Cu(1)-O(3W)	88.61(17)				
O(2W)#1-Cu(1)-O(3W)	90.48(18)	O(2W)–Cu(1)–O(3W) 89.52					
O(3W)#1-Cu(1)-O(3W)	179.997(1)	N(3)#2-Cu(2)-N(2)	92.3(3)				
N(3)#2-Cu(2)-N(2)#2	91.8(3)	N(2)–Cu(2)–N(2)#2 162.82(10					
N(2)#2-Cu(2)-N(3)	84.6(2)	N(3)#2-Cu(2)-N(3)	164.28(12)				
N(2)–Cu(2)–N(3)	87.0(2)						

Symmetry code for 4: #1 - x, -y, -z + 1; #2 - x - 3, -y + 1, -z

Compound 5						
N(1)–Cu(1)	1.992(10)	O(2W)–Cu(1)	2.348(10)			
O(1W)–Cu(1)	2.054(9)	Cu(1)–N(1)#1	1.992(10)			
Cu(1)–O(1W)#1	2.054(9)	Cu(1)-O(2W)#1	2.348(10)			
Cu(2)–N(5)#2	2.007(12)	Cu(2)–N(2)#2	2.073(14)			
N(2)–Cu(2)	2.073(14)	N(5)–Cu(2)	2.007(12)			
N(1)-Cu(1)-N(1)#1	179.997(1)	N(1)-Cu(1)-O(1W)	90.2(4)			
N(1)#1-Cu(1)-O(1W)	89.8(4)	N(1)-Cu(1)-O(1W)#1	89.8(4)			
N(1)#1-Cu(1)-O(1W)#1	90.2(4)	O(1W)-Cu(1)-O(1W)#1	179.997(1)			
N(1)-Cu(1)-O(2W)	89.3(4)	N(1)#1-Cu(1)-O(2W)	90.7(4)			
O(1W)-Cu(1)-O(2W)	90.6(4)	O(1W)#1-Cu(1)-O(2W)	89.4(4)			
N(1)-Cu(1)-O(2W)#1	90.7(4)	N(1)#1-Cu(1)-O(2W)#1	89.3(4)			
O(1W)-Cu(1)-O(2W)#1	89.4(4)	O(1W)#1-Cu(1)-O(2W)#1	90.6(4)			
O(2W)-Cu(1)-O(2W)#1	179.999(1)	N(5)#2Cu(2)N(5)	179.999(2)			
N(5)#2-Cu(2)-N(2)	90.0(5)	N(5)-Cu(2)-N(2)	90.0(5)			
N(5)#2-Cu(2)-N(2)#2	90.0(5)	N(5)-Cu(2)-N(2)#2	90.0(5)			
N(2)-Cu(2)-N(2)#2	180.0(7)					
Symmetry code for 5 : $\#1 - x - 1$, $-y + 1$, $-z$; $\#2 - x + 2$, $-y$, $-z + 1$						

Table S2. Selected Hydrogen-Bonding Geometry (Å, °) for compound 1

D–H···A	D–H	Н•••А	D····A	D–H•••A		
C(15)–H(15A)···O(16)	0.97	2.33	3.02	128		
Table S3. Selected Hydrogen-Bonding Geometry (Å, °) for compound 2						
D–H···A	D–H	Н•••А	D····A	D–H•••A		
N(4)-H(4C)····O(25)	0.86	2.18	3.01	163		
Table S4. Selected Hydrogen-Bonding Geometry (Å, °) for compound 4						
D–H····A	D–H	Н•••А	D····A	D–H•••A		
N(5)–H(5B)···O(19)	0.86	2.04	2.85	158		