SUPPLEMENTARY MATERIAL FOR:

Metallophilic Interactions in Stacked Dinuclear Rhodium 2,2'-biimidazole Carbonyl Complexes Elina Laurila^a, Rajendhraprasad Tatikonda^a, Larisa Oresmaa^a, Pipsa Hirva^a, Matti Haukka^{*b}

^a Department of Chemistry, University of Eastern Finland, Joensuu Campus, P.O. Box 111, FI-80101 Joensuu, Finland.

^{*b} Department of Chemistry, University of Jyväskylä, P.O. Box 35 FI-40014 University of Jyväskylä, Finland

Tel: +358 40 8054666, E-mail: matti.o.haukka@jyu.fi

TABLE OF CONTENT

Reference 24	S2
Figure S1. The effect of the intermolecular Rh-Rh distance on the lowest energy absorption band of $[Rh_2(Pr_2bim)Cl_2(CO)_4]_2$ (3)	S 2
Table S1. The contribution of the dominating charge transfer and the details of the lowest energy transition for compound 2 at different intermolecular Rh…Rh distances.	S 3
Table S2. The contribution of the dominating charge transfer and the details of the lowest energy transition for compound 3 at different intermolecular Rh…Rh distances.	S 3
Figure S2. Dependence of the HOMO and LUMO orbital energies on the Rh…Rh distance (Å) in the $[Rh_2(Et_2bim)Cl_2(CO)_4]_2$ system.	S4
Figure S3. Dependence of the HOMO and LUMO orbital energies on the Rh…Rh distance (Å) in the $[Rh_2(Pr_2bim)Cl_2(CO)_4]_2$ system.	S4
Figure S4. The HOMO, LUMO, LUMO+1 and LUMO+2 orbitals of the [Rh ₂ (Et ₂ bim)Cl ₂ (CO) ₄] ₂ system at experimental intermolecular rhodium…rhodium distance	S5
Figure S5. The HOMO, LUMO, LUMO+1 and LUMO+2 orbitals of the $[Rh_2(Pr_2bim)Cl_2(CO)_4]_2$ system at at experimental intermolecular rhodium…rhodium distance	S6
Figure S6. Thermal ellipsoid plot (50% probability) of the structure of the 1,1'-dipropyl-2,2'-biimidazole ($\mathbf{Pr}_2\mathbf{bim}$) -ligand.	S 7

Reference 24

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A., Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X., Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K., Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I., Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople J. A. Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford CT, 2004.

Figure S1. The peak shift of the absorption signal corresponding to the different intermolecular Rh…Rh distance (d) in the $[Rh_2(Pr_2bim)Cl_2(CO)_4]_2$ system. The Rh…Rh distance of 3.4403(3) Å is the experimental value.

Table S1. The contribution of the dominating charge transfer and the details of the lowest er	nergy
transition for compound 2 at different intermolecular Rh…Rh distances.	

Rh…Rh (Å)	HOMO-LUMO+n %	λ (nm)	f	HOMO-LUMO+n gap (eV)	HOMO (eV)	LUMO (eV)
Isolated complex*	80	409	0.1062	4.23	-5.43	-1.20
3.0 Å	85	543	0.3688	3.21	-4.56	-1.34
3.4345. exp ^a	84	479	0.4026	3.58	-4.86	-1.28
3.4990. exp ^b	83	464	0.4129	3.67	-4,84	-1,17
3.8 Å	80	451	0.3835	3.79	-5.03	-1.24

^a experimental intranuclear distance of Rh…Rh of structure at 100K.

^b experimental intranuclear distance of Rh…Rh of structure at 260K.

In the chain structures the dominating charge transfer is from HOMO to LUMO+2 at all analysed intermolecular Rh…Rh distances.

*In the case of isolated dinuclear complex the dominating transition is from HOMO to LUMO+1.

 $\boldsymbol{\lambda}$ is the absorption wavelength.

f is the oscillator strength of the transition.

Table S2. T	he contribution	of the dominating	g charge trans	sfer and the	details of the	lowest energy
transition for	r compound 3 a	t different interm	olecular Rh…	Rh distance	es.	

Rh…Rh (Å)	HOMO-LUMO+n %	1 (nm)	f	HOMO-LUMO+n gap (eV)	HOMO (eV)	LUMO (eV)
Isolated complex*	84	403	0.1212	4.26	-5.36	-1.10
3.0 Å	85	529	0.394	3.27	-4.48	-1.21
3.4403. exp. ^a	84	470	0.4156	3.63	-4.79	-1.16
3.4944. exp. ^b	84	459	0.4137	3.71	-4.86	-1.15
3.8 Å	80	443	0.3968	3.83	-4.95	-1.12

^a experimental intranuclear distance of Rh…Rh of structure at 100K.

^b experimental intranuclear distance of Rh…Rh of structure at 260K.

In the chain structures the dominating charge transfer is from HOMO to LUMO+2 at all analysed intermolecular Rh…Rh distances.

*In the case of isolated dinuclear complex the dominating transition is from HOMO to LUMO+1.

 λ is the absorption wavelength.

f is the oscillator strength of the transition.

Figure S2. Dependence of the HOMO and LUMO orbital energies on the Rh…Rh distance (Å) in the $[Rh_2(Et_2bim)Cl_2(CO)_4]_2$ system.

Figure S3. Dependence of the HOMO and LUMO orbital energies on the Rh…Rh distance (Å) in the $[Rh_2(Pr_2bim)Cl_2(CO)_4]_2$ system.

Figure S4. The HOMO. LUMO. LUMO+1 and LUMO+2 orbitals of the $[Rh_2(Et_2bim)Cl_2(CO)_4]_2$ system at experimental intermolecular rhodium…rhodium distance of 3.4345(6) Å.

Figure S5. The HOMO. LUMO. LUMO+1 and LUMO+2 orbitals of the $[Rh_2(Pr_2bim)Cl_2(CO)_4]_2$ system at experimental intermolecular rhodium…rhodium distance of 3.4403(3) Å.

Figure S6. Thermal ellipsoid plot (50% probability) of the structure of 1.1'-dipropyl-2.2'-biimidazole (**Pr**₂**bim**) -ligand.