# **Remote Halogen switch of amine hydrophilicity**

Michał Andrzejewski, Anna Olejniczak, Andrzej Katrusiak\*

Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland

Corresponding author: katran@amu.edu.pl

## Abstract

Bromide and iodide anions switch over the hydrogen-bonding patterns in otherwise isostructural crystals of dimethanol solvate N-methyl-1,4-diazabicyclo[2.2.2]octanium bromide (dabcoCH<sub>3</sub>Br·2CH<sub>3</sub>OH) and analogous iodide (dabcoCH<sub>3</sub>I·2CH<sub>3</sub>OH), both synthesized in high-pressure Menshutkin reaction at 1.2 GPa and 2.4 GPa, respectively. Magnitudes of pressure triggering these reactions correspond to identical molecular volume of both solvates.



## **Experimental**

### Crystals growth at high pressure

High-pressure reactions of dabcoHBr/dabcoHI substrate dissolved in an excess of methanol have been conducted *in situ* in a diamond-anvil cell (DAC) [16]. Pressure was calibrated by the ruby-fluorescense method [17] using a Betsa PRL spectrometer, with an accuracy of 0.05 GPa. The gaskets were made of steel foil, 0.11 mm thick, with an aperture of 0.36 mm in diameter. One third of the DAC-chamber volume was filled with few grains of the compound and topped up with methanol. Both samples were prepared in this manner. The yield of both reactions could be assessed of the sizes of the grown single crystals as close to 100%. The pressure triggering reaction was measured in a series of crystallizations at gradually increased pressure, until at 1.2 GPa a new crystal habit was noted (Fig. S1). The subsequent X-ray diffraction measurement confirmed that dabcoCH<sub>3</sub>Br·2CH<sub>3</sub>OH was formed. Another crystal was grown at 1.7 GPa (Fig. S2) and the X-ray diffraction measurement was repeated. The Xray diffraction powder pattern of the sample recovered from the DAC was inconsistent with dabcoCH<sub>3</sub>Br·2CH<sub>3</sub>OH, indicating that the solvate decomposes at 0.1 MPa. Likewise, dabcoCH<sub>3</sub>I·2CH<sub>3</sub>OH was synthesized at 2.4 GPa (Figs S3, S4) and its structure determined at 2.4, 1.2 and 1.0 GPa. Starting from about 1.5 GPa the sample crystal started to dissolve. At 0.8 GPa it broke into small pieces, which could be caused by a phase transition or decomposition, and at 0.5 GPa all the crystalline fragments dissolved completely. Again, Xray diffraction of the powdered dabcoCH<sub>3</sub>I·2MeOH sample recovered from the DAC was inconsistent with the single crystal structure, indicating the solvate decomposition.



**Figure S1.** Isochoric growth of a single-crystal of dabcoCH<sub>3</sub>Br·2CH<sub>3</sub>OH from methanol solution: (a) one grain after dissolving polycrystalline precipitate at 383 K; (b) this single crystal at 373 K; (c) 368 K; (d) at 1.2 GPa/296 K.



**Figure S2**. Stages of isochoric growth of a single-crystal dabcoCH<sub>3</sub>Br·2CH<sub>3</sub>OH from methanol solution: (a) one small grain after dissolving polycrystalline mass at 410 K; (b) the same single-crystal at 401 K; (c) 391 K; (d) the single-crystal at 1.7 GPa/296 K.



**Figure S3.** DabcoCH<sub>3</sub>I·2CH<sub>3</sub>OH isochoric crystallization from methanol solution in the DAC chamber: (a) one seed at 453 K, (b) the crystal at 443 K, (c) 423 K, (d) at 2.4 GPa/296 K; and its isothermal dissolution at (e) 1.2 GPa and (f) 1.0 GPa.



**Figure S4**. Stages of isochoric growth of the single crystal of dabcoCH<sub>3</sub>I·2MeOH from methanol solution: (a) one small grain after dissolving polycrystalline precipitate at 463 K; (b) 453 K; (c-e) 443 K; (f-h) 433 K; (i,j) 423 K; (k) 413 K; (l) 403 K; (m) 373 K; (n) 353 K; (o) 333 K; (p) the single-crystal at 2.4 GPa/296 K.

#### X-Ray diffraction analyses

The diffraction data of single crystals grown *in situ* in the DAC have been measured with a KUMA KM4-CCD diffractometer according to previously described procedures [18]. The CrysAlis software [19] was used for the data collections and their preliminary reduction. Corrections of intensities for the DAC and sample absorption, and gasket shadowing were applied, and reflections overlapping with diamond reflections were eliminated [20]. All structures were solved straightforwardly by direct methods and refined by full-matrix least-squares [21]. Anisotropic temperature factors were applied for the bromide and iodide anions only. H-Atoms in the structures were located from molecular geometry (AFIX instructions 23,33 and 83), with the C-H distance of 0.97 Å in ethylene, C-H 0.96 Å for methyl, and O-H

0.82 Å for hydroxyl H-atoms, and their  $U_{iso}$ 's were constrained to 1.2-1.5 times  $U_{eq}$  of the carrier atoms.

|                                            | dabcoCH3Br·2CH3OH                           |                     | dabcoCH <sub>3</sub> I·2CH |                    |                    |  |  |
|--------------------------------------------|---------------------------------------------|---------------------|----------------------------|--------------------|--------------------|--|--|
| p (GPa)                                    | 1.20(5)                                     | 1.70(5)             | 1.00(5)                    | 1.20(5)            | 2.40(5)            |  |  |
| Formula                                    | $C_9H_{23}N_2BrO_2$                         | $C_9H_{23}N_2BrO_2$ | $C_9H_{23}N_2IO_2$         | $C_9H_{23}N_2IO_2$ | $C_9H_{23}N_2IO_2$ |  |  |
| T (K)                                      | 296(2)                                      | 296(2)              | 296(2)                     | 296(2)             | 296(2)             |  |  |
| Formula weight                             | 271.2                                       | 271.2               | 318.19                     | 318.19             | 318.19             |  |  |
| Wavelength (Å)                             | 0.71073                                     | 0.71073             | 0.71073                    | 0.71073            | 0.71073            |  |  |
| Crystal system                             | monoclinic                                  | monoclinic          | monoclinic                 | monoclinic         | monoclinic         |  |  |
| Space group                                | $P2_1/m$                                    | $P2_1/m$            | $P2_1/m$                   | $P2_1/m$           | $P2_1/m$           |  |  |
| Unit cell dimensions (Å,°)                 |                                             |                     |                            |                    |                    |  |  |
| a                                          | 9.270(2)                                    | 9.194(4)            | 9.059(3)                   | 9.040(3)           | 8.879(3)           |  |  |
| b                                          | 6.7304(13)                                  | 6.653(3)            | 6.7868(17)                 | 6.7590(9)          | 6.6161(9)          |  |  |
| c                                          | 9.710(4)                                    | 9.643(9)            | 10.543(4)                  | 10.516(3)          | 10.328(3)          |  |  |
| β                                          | 107.60(4)                                   | 107.72(7)           | 108.28(3)                  | 108.45(3)          | 108.81(3)          |  |  |
| Volume (Å3)                                | 577.5(3)                                    | 561.9(6)            | 615.5(3)                   | 609.5(3)           | 574.3(2)           |  |  |
| Z                                          | 2                                           | 2                   | 2                          | 2                  | 2                  |  |  |
| Calculated density (g/cm <sup>3</sup> )    | 1.560                                       | 1.603               | 1.717                      | 1.734              | 1.840              |  |  |
| Absorption coefficient (mm <sup>-1</sup> ) | 3.540                                       | 3.639               | 2.584                      | 2.609              | 2.769              |  |  |
| F(000)                                     | 284                                         | 284                 | 320                        | 320                | 320                |  |  |
| Crystal size (mm)                          | 0.44x0.14x0.10                              | 0.46x0.18x0.10      | 0.16x0.28x0.10             | 0.21x0.28x0.10     | 0.26x0.29x0.10     |  |  |
| $\theta$ -range for data collection (°)    | 3.81 to 28.23                               | 3.85 to 28.49       | 3.57 to 26.85              | 3.59 to 26.98      | 3.67 to 28.17      |  |  |
| Min/max indices:h, k, l                    | -11/12,-8/8,-5/5                            | -12/11,-8/8,-4/4    | -5/5,-8/8,-9/9             | -5/5,-8/8,-9/9     | -5/5,-8/8,-9/9     |  |  |
| Reflect. Collected/unique                  | 4082/447                                    | 3313/370            | 2279/221                   | 2345/226           | 2509/241           |  |  |
| Rint                                       | 0.1142                                      | 0.2220              | 0.0394                     | 0.0544             | 0.0789             |  |  |
| Refinement method                          | Full-matrix least-squares on F <sup>2</sup> |                     |                            |                    |                    |  |  |
| Completeness (%)                           | 29.0                                        | 24.0                | 15.3                       | 15.6               | 15.7               |  |  |
| Data/restrains/parameters                  | 447/4/40                                    | 370/2/43            | 221/2/42                   | 226/2/42           | 241/2/42           |  |  |
| Goodness-of-fit on F <sup>2</sup>          | 1.167                                       | 1.137               | 1.178                      | 1.676              | 1.394              |  |  |
| Final R1/wR2 (I> $2\sigma$ 1)              | 0.0643/0.1434                               | 0.1125/0.2178       | 0.0258/0.0609              | 0.0447/0.1544      | 0.0550/0.0882      |  |  |
| R1/wR2 (all data)                          | 0.0984/0.1599                               | 0.1801/0.2507       | 0.0277/0.0617              | 0.0486/0.1566      | 0.0590/0.0884      |  |  |
| Weighting parameters $w_1, w_2^{(a)}$      | 0.0779/0.4758                               | 0.1232/0.0000       | 0.0336/0.7968              | 0.0477/0.1549      | 0.0000/5.5037      |  |  |
| Largest diff. peak/hole (e.Å-3)            | 0.442/-0.377                                | 0.415/-0.346        | 0.195/-0.196               | 0.537/-0.540       | 0.259/-0.236       |  |  |

**Table S1.** Crystal data and structure-refinements details of  $dabcoCH_3Br \cdot 2CH_3OH$  and  $dabcoCH_3I \cdot 2CH_3OH$  solvates.

 $w=1/(\sigma^2 F_o^2 + w_1^2 * P^2 + w_2 * P)$ , where  $P=(Max(F_o^2, 0) + 2*F_c^2)/3$ 

| Table S2. The intermolecular and interionic contacts shorter than the sums of van der Waals    |
|------------------------------------------------------------------------------------------------|
| radii [13] in the structures of dabcoCH3Br·2CH3OH and dabcoCH3I·2CH3OH solvates.               |
| Distances longer than these sums between $Br^{-}$ and $C(7)H_3$ have been added for comparison |
| (indicated with asterisks).                                                                    |

| DH···A                       | $H \cdots A(A)$          | $D \cdots A (Å)$         | $DH \cdots A(^{\circ})$ | Symmetry code         |
|------------------------------|--------------------------|--------------------------|-------------------------|-----------------------|
| da                           | abcoCH <sub>3</sub> Br·2 | 2CH <sub>3</sub> OH at 1 | 1.2 GPa                 |                       |
| O(1M)- $H(1M)$ ···· $Br(1)$  | 2.59(1)                  | 3.23(8)                  | 124                     | 1-x,2-y,1-z           |
| $O(1M)-H(1M)\cdots Br(1)$    | 2.59(1)                  | 3.23(8)                  | 124                     | 1-x,-0.5+y,1-z        |
| $*C(7)-H(7A)\cdots Br(1)$    | 3.21(1)                  | 3.80(6)                  | 121                     | x,y,z                 |
| *C(2M)-H(2MC))Br(1)          | 3.21(1)                  | 3.60(7)                  | 107                     | x,y,x                 |
|                              |                          |                          |                         | -                     |
| $O(2M)-H(2MA)\cdots O(1M)$   | 2.41                     | 4.10(1)                  | 140                     | 1-x,0.5+y,1-z         |
| $O(2M)-H(2MC)\cdots O(1M)$   | 2.50                     | 4.10(1)                  | 134                     | 1-x,2-y,1-z           |
| $O(2M)-H(2MA)\cdots O(1M)$   | 2.41                     | 4.10(1)                  | 140                     | 1-x,1-y,1-z           |
| $O(2M)-H(2MC)\cdots O(1M)$   | 2.50                     | 4.10(1)                  | 134                     | 1-x,-0.5+y,1-z        |
| $O(2M)-H(2M)\cdots O(1M)$    | 2.00                     | 2.77(5)                  | 156                     | x,y,z                 |
| $O(2M)-H(2M)\cdots O(1M)$    | 2.00                     | 2.77(5)                  | 156                     | x,y,z                 |
|                              |                          |                          |                         |                       |
| $C(5)-H(5B)\cdots O(1M)$     | 2.63                     | 3.46(2)                  | 144                     | x,y,z                 |
| $C(5)-H(5B)\cdots O(1M)$     | 2.63                     | 3.46(2)                  | 144                     | x,1.5-y,1+z           |
| C(7)- $H(7B)$ ···O(1M)       | 2.50                     | 3.45(2)                  | 168                     | x,1.5-y,1+z           |
| C(7)- $H(7B)$ ···· $O(1M)$   | 2.63                     | 3.45(2)                  | 144                     | x,y,1+z               |
| C(7)- $H(7B)$ ···· $O(1M)$   | 2.63                     | 3.45(2)                  | 144                     | x,1.5-y,1+z           |
| C(7)- $H(7B)$ ···O(1M)       | 2.50                     | 3.45(2)                  | 165                     | x,y,1+z               |
| C(6)- $H(6B)$ ···· $O(2M)$   | 2.63                     | 3.10(2)                  | 110                     | 1-x,2-y,1-z           |
| C(6)- $H(6B)$ ···· $O(2M)$   | 2.63                     | 3.10(2)                  | 110                     | 1-x,-0.5+y,1-z        |
|                              |                          |                          | - ~-                    |                       |
|                              | abcoCH <sub>3</sub> Br·2 | $2CH_3OH$ at 1           | 1.7 GPa                 | 1 0 1                 |
| $O(1M)-H(1M)\cdots Br(1)$    | 2.55                     | 3.16                     | 122                     | 1-x,2-y,1-z           |
| $O(1M)-H(1M)\cdots Br(1)$    | 2.55                     | 3.16                     | 122                     | 1-x,-0.5+y,1-z        |
| $*C(/)-H(/A)\cdots Br(1)$    | 3.16(1)                  | 3.51(5)                  | 120                     | x,y,z                 |
| $*C(2M)-H(2MC))\cdots Br(1)$ | 3.14(1)                  | 3.74(7)                  | 104                     | x,y,x                 |
| O(2M) H(2MA) = O(1M)         | 2.44                     | 4 17                     | 142                     | 1 x 0 5 1 x 1 7       |
| O(2M) H(2MC) = O(1M)         | ∠.44<br>2.57             | 4.17                     | 143                     | 1 - x, 0.3 + y, 1 - Z |
| O(2M) H(2MA) = O(1M)         | 2.37                     | 4.17                     | 134                     | 1-X,2-Y,1-Z           |
| O(2M) H(2MC) O(1M)           | 2.44<br>2.57             | 4.17                     | 143                     | 1 - x, 1 - y, 1 - Z   |
| O(2M) H(2M) = O(1M)          | 2.37                     | 4.17                     | 154                     | 1-x,-U.J+y,1-Z        |
| O(2M) H(2M) = O(1M)          | 1.90                     | 2.74                     | 150                     | x,y,z                 |
| O(2M)- $H(2M)$ ···· $O(1M)$  | 1.96                     | 2.74                     | 158                     | x,y,z                 |
| C(5)-H(5B)····O(2M)          | 2.67                     | 3.19(3)                  | 114                     | 1-x,2-y,1-z           |
| $C(5)-H(5B)\cdots O(2M)$     | 2.67                     | 3.19(3)                  | 114                     | 1-x,-0.5-y,1-z        |
| $C(7)-H(7B)\cdots O(1M)$     | 2.40                     | 3.35(1)                  | 168                     | x,1.5-y,1+z           |
| $C(7)-H(7B)\cdots O(1M)$     | 2.53                     | 3.35(1)                  | 143                     | x,y,1+z               |
| $C(7)-H(7B)\cdots O(1M)$     | 2.53                     | 3.35(1)                  | 143                     | x,1.5-y,1+z           |
| C(7)- $H(7B)$ ···· $O(1M)$   | 2.40                     | 3.35(1)                  | 168                     | x,y,1+z               |
| $C(6)-H(6B)\cdots O(2M)$     | 2.63                     | 3.11(5)                  | 111                     | 1-x,2-y,1-z           |
| $C(6)-H(6B)\cdots O(2M)$     | 2.63                     | 3.11(5)                  | 111                     | 1-x,-0.5+y,1-z        |

## Table S2. Continuation.

| DHA                                                   | $H_{\dots}\Delta(\mathring{\Delta})$ | $D \dots A (Å)$         | DHA (°)    | Symmetry code                           |  |  |  |  |
|-------------------------------------------------------|--------------------------------------|-------------------------|------------|-----------------------------------------|--|--|--|--|
| DIIA                                                  | debeeCULL                            |                         |            | Symmetry code                           |  |  |  |  |
| C(7) $H(7A)$ $I(1)$                                   | 2 16                                 | $-H_3OH at 1.$          | <u>164</u> |                                         |  |  |  |  |
| $C(7) H(7A) \cdots I(1)$                              | 5.10                                 | 4.09(5)                 | 104        | x,y,1+z                                 |  |  |  |  |
| C(/)-H(/B)···I(1)                                     | 3.13                                 | 4.06(3)                 | 164        | -x,1-y,-z                               |  |  |  |  |
| $C(/)-H(/B)\cdots I(1)$                               | 3.13                                 | 4.06(3)                 | 164        | -x,-0.5+y,-z                            |  |  |  |  |
| $O(2M)-H(2M)\cdots I(1)$                              | 2.11                                 | 3.55(3)                 | 159        | x,y,z                                   |  |  |  |  |
| O(1M)-H(1M)····N(4)                                   | 1.97                                 | 2.80(4)                 | 178        | x,y,z                                   |  |  |  |  |
| C(3)- $H(3A)$ ···· $O(1M)$                            | 2.67                                 | 3.41(1)                 | 135        | 1-x.1-vz                                |  |  |  |  |
| $C(5)-H(5A)\cdots O(1M)$                              | 2.52                                 | 3.28(4)                 | 136        | 1-x.0.5+yz                              |  |  |  |  |
| $C(5)-H(5A)\cdots O(1M)$                              | 2.52                                 | 3.28(4)                 | 136        | 1-xvz                                   |  |  |  |  |
| $C(3)-H(3A)\cdots O(1M)$                              | 2.67                                 | 3.42(1)                 | 134        | $1-x_{-}-0.5+y_{-}-z_{-}$               |  |  |  |  |
| $C(6)-H(6A)\cdots O(2M)$                              | 2.62                                 | 2.96(3)                 | 100        | 1 - x = 0.5 + y - 7                     |  |  |  |  |
| $C(5)-H(5B)\cdots O(2M)$                              | 2.62                                 | 2.90(3)                 | 98         | $1 \times 0.5 + y = 2$<br>1-x 0 5+y = 7 |  |  |  |  |
| C(5)-H(5B)O(2M)                                       | 2.67                                 | 2.97(3)                 | 98         | 1 -x -y -7                              |  |  |  |  |
| $C(6) H(6A) \dots O(2M)$                              | 2.07                                 | 2.97(3)                 | 100        | 1 - x, -y, -z                           |  |  |  |  |
| C(0)-11(0A)O(2101)                                    | 2.02                                 | 2.90(3)                 | 100        | 1-x,-y,-Z                               |  |  |  |  |
| dabcoCH <sub>3</sub> I·2CH <sub>3</sub> OH at 1.2 GPa |                                      |                         |            |                                         |  |  |  |  |
| C(7)- $H(7A)$ ···· $I(1)$                             | 3.15                                 | 4.07(7)                 | 161        | x,y,1+z                                 |  |  |  |  |
| C(7)-H(7B)····I(1)                                    | 3.11                                 | 4.03(6)                 | 163        | -x,1-y,-z                               |  |  |  |  |
| C(7)- $H(7B)$ ···· $I(1)$                             | 3.11                                 | 4.03(6)                 | 163        | -x,-0.5+y,-z                            |  |  |  |  |
| $C(2M)-H(2MB)\cdots I(1)$                             | 3.14                                 | 4.10(2)                 | 178        | 1-x,1-y,1-z                             |  |  |  |  |
| $C(2M)-H(2MB)\cdots I(1)$                             | 3.14                                 | 4.10(2)                 | 178        | 1-x,-0.5+y,1-z                          |  |  |  |  |
| O(2M)- $H(2M)$ ···· $I(1)$                            | 2.84                                 | 3.62(4)                 | 157        | x,y,z                                   |  |  |  |  |
| O(1M)-H(1M)····N(4)                                   | 2.02                                 | 2.84(7)                 | 168        | x,y,z                                   |  |  |  |  |
| C(3)-H(3A)····O(1M)                                   | 2.65                                 | 3.39(1)                 | 133        | 1-x,1-y,-z                              |  |  |  |  |
| C(5)- $H(5A)$ ···· $O(1M)$                            | 2.58                                 | 3.32(7)                 | 133        | 1-x,0.5+y,-z                            |  |  |  |  |
| C(5)- $H(5A)$ ···· $O(1M)$                            | 2.58                                 | 3.32(7)                 | 133        | 1-x,-y,-z                               |  |  |  |  |
| C(3)- $H(3A)$ ···· $O(1M)$                            | 2.65                                 | 3.39(1)                 | 133        | 1-x,-0.5+y,-z                           |  |  |  |  |
| C(6)- $H(6A)$ ···· $O(2M)$                            | 2.55                                 | 2.90(6)                 | 101        | 1-x,0.5+y,-z                            |  |  |  |  |
| C(5)-H(5B)····O(2M)                                   | 2.67                                 | 2.94(5)                 | 96         | 1-x,0.5+y,-z                            |  |  |  |  |
| $C(5)-H(5B)\cdots O(2M)$                              | 2.67                                 | 2.94(5)                 | 96         | 1-x,-y,-z                               |  |  |  |  |
| C(6)-H(6A)····O(2M)                                   | 2.55                                 | 2.90(6)                 | 101        | 1-x,-y,-z                               |  |  |  |  |
|                                                       | dabcoCH <sub>3</sub> I·2             | CH <sub>3</sub> OH at 2 | .4 GPa     |                                         |  |  |  |  |
| C(7)-H(7A)····I(1)                                    | 3.09                                 | 4.00(7)                 | 160        | x,y,1+z                                 |  |  |  |  |
| C(7)- $H(7B)$ ···· $I(1)$                             | 3.06                                 | 3.99(4)                 | 163        | -x,1-y,-z                               |  |  |  |  |
| $C(7)-H(7B)\cdots I(1)$                               | 3.06                                 | 3.99(4)                 | 163        | -x,-0.5+y,-z                            |  |  |  |  |
| $C(2M)-H(2MB)\cdots I(1)$                             | 3.07                                 | 4.65(2)                 | 177        | 1-x,1-y,1-z                             |  |  |  |  |
| $C(2M)-H(2MB)\cdots I(1)$                             | 3.07                                 | 4.65(2)                 | 177        | 1-x0.5+v.1-z                            |  |  |  |  |
| $C(2M)-H(2MA)\cdots I(1)$                             | 3.16                                 | 3.82(3)                 | 128        | X.V.Z                                   |  |  |  |  |
| O(2M) - H(2M) - I(1)                                  | 2.80                                 | 3.56(4)                 | 155        | X.V.Z                                   |  |  |  |  |
|                                                       |                                      |                         |            | 7,5,7                                   |  |  |  |  |
| O(1M)- $H(1M)$ ···· $N(4)$                            | 1.93                                 | 2.75(5)                 | 173        | x,y,z                                   |  |  |  |  |
| C(3)-H(3A)O(1M)                                       | 2.60                                 | 3.33(1)                 | 132        | 1-x,1-y,-z                              |  |  |  |  |
| C(5)-H(5A)····O(1M)                                   | 2.55                                 | 3.27(6)                 | 131        | 1-x,0.5+y,-z                            |  |  |  |  |
| C(5)- $H(5A)$ ···· $O(1M)$                            | 2.55                                 | 3.27(6)                 | 131        | 1-x,-y,-z                               |  |  |  |  |
| C(3)-H(3A)····O(1M)                                   | 2.60                                 | 3.33(1)                 | 132        | 1-x,-0.5+y,-z                           |  |  |  |  |
| C(6)-H(6A)····O(2M)                                   | 2.81                                 | 2.84(5)                 | 82         | 1-x,0.5+y,-z                            |  |  |  |  |
| C(5)-H(5B)····O(2M)                                   | 2.61                                 | 2.89(4)                 | 97         | 1-x,0.5+y,-z                            |  |  |  |  |
| C(5)-H(5B)····O(2M)                                   | 2.61                                 | 2.89(4)                 | 97         | 1-x,-y,-z                               |  |  |  |  |
| C(6)-H(6A)····O(2M)                                   | 2.81                                 | 2.84(5)                 | 82         | 1-x,-y,-z                               |  |  |  |  |