Electronic supporting information (ESI) for the manuscript:

# Self-assembly, metal binding ability, and magnetic properties of dinickel(II) and dicobalt(II) triple mesocates

Marie-Claire Dul, Rodrigue Lescouëzec,\* Lise-Marie Chamoreau, Yves Journaux,\* Rosa Carrasco, María Castellano, Rafael Ruiz-García, Joan Cano, Francesc Lloret,\* Miguel Julve, Catalina Ruiz-Pérez, Oscar Fabelo, and Emilio Pardo\*

#### **Electronic spectra**

The electronic absorption spectra of **4** and **5** in water are compared to that of the proligand Et<sub>2</sub>H<sub>2</sub>L in THF in Fig. S1. Complexes **4** and **5** exhibit a very strong band in the UV region located at  $\lambda_{max} = 250$  ( $\varepsilon = 88500 \text{ M}^{-1} \text{ cm}^{-1}$ ) and 255 nm ( $\varepsilon = 92000 \text{ M}^{-1} \text{ cm}^{-1}$ ), respectively [Fig. S1(a) and (b)]. This intense UV band is unambiguously assigned to an intraligand (IL)  $\pi$ - $\pi$ \* transition within the aromatic benzene ring, which occurs at  $\lambda_{max} = 270 \text{ nm}$  ( $\varepsilon = 29500 \text{ M}^{-1} \text{ cm}^{-1}$ ) for Et<sub>2</sub>H<sub>2</sub>L with approximately one third-fold intensity relative to that in **4** and **5** as expected from the ligand/metal molar ratio of 3:2 [Fig. S1(c)]. In addition, **4** and **5** show several characteristic d–d bands in the visible and NIR regions.

Complex 4 shows a weak NIR band located at  $\lambda_{max} = 945 \text{ nm} (\varepsilon = 35 \text{ M}^{-1} \text{ cm}^{-1})$  and a visible band at  $\lambda_{max} = 635 \text{ nm} (\varepsilon = 60 \text{ M}^{-1} \text{ cm}^{-1})$ , which is responsible for its green color [Fig. S1(a)]. These two d–d bands are assigned to the  ${}^{3}\text{T}_{2g}(\text{F}) \leftarrow {}^{3}\text{A}_{2g}(\text{F})$  ( $v_1$ ) and  ${}^{3}\text{T}_{1g}(\text{F}) \leftarrow {}^{3}\text{A}_{2g}(\text{F})$  ( $v_2$ ) transitions respectively, of the octahedral high-spin d<sup>8</sup> Ni<sup>II</sup> ion ( $O_h$  point group).<sup>1</sup> The third spin-allowed d–d band corresponding to the  ${}^{3}\text{T}_{1g}(\text{P}) \leftarrow {}^{3}\text{A}_{2g}(\text{F})$  ( $v_3$ ) transition appears as a poorly resolved shoulder at  $\lambda_{max}$  *ca.* 375 nm ( $\varepsilon = 280 \text{ M}^{-1} \text{ cm}^{-1}$ ) in the low-energy tail of the intense UV band. Instead, the extremely weak absorption feature at  $\lambda_{max} = 788 \text{ nm}$  ( $\varepsilon = 25 \text{ M}^{-1} \text{ cm}^{-1}$ ) is often ascribed to the spin-forbidden d–d band corresponding to the  ${}^{1}\text{E}_{g}(\text{F}) \leftarrow {}^{3}\text{A}_{2g}(\text{F})$  transition of octahedral high-spin d<sup>8</sup> Ni<sup>II</sup> ion ( $O_h$  point group).<sup>1</sup>

Complex 5 shows a weak NIR band at  $\lambda_{max} = 1045 \text{ nm} (\varepsilon = 15 \text{ M}^{-1} \text{ cm}^{-1})$  and a visible band at  $\lambda_{max} = 510 \text{ nm} (\varepsilon = 100 \text{ M}^{-1} \text{ cm}^{-1})$ , which is responsible for its pink color [Fig. S1(b)]. These two d–d bands are commonly assigned to the  ${}^{4}\text{T}_{2g}(\text{F}) \leftarrow {}^{4}\text{T}_{1g}(\text{F}) (v_1)$  and  ${}^{4}\text{T}_{1g}(\text{P}) \leftarrow {}^{4}\text{T}_{1g}(\text{F}) (v_2)$  transitions respectively, of the octahedral high-spin d<sup>7</sup> Co<sup>II</sup> ion ( $O_h$  point group).<sup>1</sup> The third spin-allowed d–d band which corresponds to the  ${}^{4}\text{A}_{2g}(\text{F}) \leftarrow {}^{4}\text{T}_{1g}(\text{F}) (v_3)$  transition, being essentially a two-electron transition from  $(t_{2g})^5(e_g)^2$  to  $(t_{2g})^3(e_g)^4$  configurations, is expected to be weak and probably not observed.<sup>1</sup> In fact, the fine structure of the main visible band at  $\lambda_{max} = 510 \text{ nm}$ , with two distinct shoulders at  $\lambda_{max} = 473$  and 543 nm ( $\varepsilon = 90 \text{ M}^{-1} \text{ cm}^{-1}$ ), may likely arise from the term splitting of the  ${}^{4}\text{T}_{1g}(\text{F}) (v_2)$ 

<sup>(1) (</sup>a) E. Koenig, Struct. Bond., 1972, 9, 175; (b) Y. S. Dou, J. Chem. Ed., 1990, 67, 134.

transition due to spin-orbit coupling and/or trigonal distortion of the octahedral geometry.



Fig. S1 UV-visible-NIR spectra of 4 (a) and 5 (b) in water and of  $Et_2H_2L$  in THF (c).

#### **Magnetic properties**

The  $\chi_M T$  vs. T plots ( $\chi_M$  being the molar magnetic susceptibility per dinuclear unit and T the temperature) of **4** and **5** are compared in Fig. S2.

The  $\chi_M T$  vs. *T* plot for **4** is characteristic of moderately weak ferromagnetically coupled Ni<sup>II</sup><sub>2</sub> units with a nonnegligible zero-field splitting (ZFS) of the six-coordinate, octahedral high-spin d<sup>8</sup> Ni<sup>II</sup> ions (<sup>3</sup>A<sub>2g</sub>) (Fig. S2). At room temperature, the  $\chi_M T$  value of 2.32 cm<sup>3</sup> mol<sup>-1</sup> K is close to that expected for two magnetically non-interacting high-spin Ni<sup>II</sup> ions [ $\chi_M T = 2 \times (N\beta^2 g_{Ni}^2/3k)S_{Ni}(S_{Ni} + 1) = 2.31$  cm<sup>3</sup> mol<sup>-1</sup> K with  $S_{Ni} = 1$  and  $g_{Ni} = 2.15$ ]. Upon cooling,  $\chi_M T$  continuously increases to reach a maximum of 3.21 cm<sup>3</sup> mol<sup>-1</sup> K at 3.8 K, and then it sligthly decreases down to 3.04 cm<sup>3</sup> mol<sup>-1</sup> K at 2.0 K. The increase of  $\chi_M T$  in the high-temperature region indicates a weak ferromagnetic intradimer interaction. Yet the maximum value of  $\chi_M T$  is slightly below than that expected for a ground quintet spin state for the Ni<sup>II</sup><sub>2</sub> unit [ $\chi_M T = (N\beta^2 g^2/3k)S(S + 1) = 2N\beta^2 g^2/k = 3.47$  cm<sup>3</sup> mol<sup>-1</sup> K with S = 2 and  $g = g_{Ni} = 2.15$ ]. The slight decrease of  $\chi_M T$  in the low-temperature region is most likely due to ZFS effects. In fact, the antiferromagnetic interdimer interactions through the diamagnetic Na<sup>I</sup> ions are certainly negligible given the large intermolecular metal-metal separation of *ca.* 8 Å.

The magnetic susceptibility data of **4** were analyzed through a spin Hamiltonian for a dimer model which takes into account the axial ZFS of the  ${}^{3}A_{2g}$  ground state of the octahedral high-spin Ni<sup>II</sup> ions [eqn (S1) with  $S_1 = S_2 = S_{Ni} = 1$ ], where *J* is the magnetic coupling parameter, *D* is the single-ion axial magnetic anisotropy parameter, and *g* is the Landé factor.<sup>2</sup> A good fit was obtained through the appropriate analytical expression<sup>2b</sup> with J = +3.6 cm<sup>-1</sup>, D = -3.5 cm<sup>-1</sup>, and g = 2.14 (solid line in Fig. S2). The calculated values of *J* and *D* for **4** agree with those found for **2** (J = +3.2 cm<sup>-1</sup> and D = -3.4 cm<sup>-1</sup>).<sup>3</sup>

<sup>(2) (</sup>a) A. P. Ginsberg, R. L. Martin, R. W. Brookes and R. C. Sherwood, *Inorg. Chem.*, 1972, **11**, 2884; (b) G. De Munno, M. Julve and F. Lloret, *J. Chem. Soc.*, *Dalton Trans.*, 1993, 1179.

<sup>(3)</sup> D. Cangussu, E. Pardo, M.-C. Dul, R. Lescouëzec, P. Herson, Y. Journaux, E. F. Pedroso, C. L. M. Pereira, H. O. Stumpf, M. C. Muñoz, R. Ruiz-García, J. Cano, M. Julve and F. Lloret, *Inorg. Chim. Acta*, 2008, **361**, 3394.

$$\mathbf{H} = -J \mathbf{S}_1 \cdot \mathbf{S}_2 + D \sum_{i=1,2} \mathbf{S}_{zi}^2 + g\beta H \sum_{i=1,2} \mathbf{S}_i$$
(S1)

The  $\chi_M T vs. T$  plot for **5** agrees with a weak ferromagnetically coupled Co<sup>II</sup><sub>2</sub> units with an important spin-orbit coupling (SOC) of the octahedral high-spin d<sup>7</sup> Co<sup>II</sup> ions (<sup>4</sup>T<sub>1g</sub>) (Fig. S2). At room temperature, the  $\chi_M T$  value of 5.98 cm<sup>3</sup> mol<sup>-1</sup> K is close to that expected for two magnetically non-interacting high-spin Co<sup>II</sup> ions with an important orbital contribution, as compared with the spin-only value [ $\chi_M T = 2 \times (N\beta^2 g_{Co}^2/3k)S_{Co}(S_{Co} + 1) = 3.75 \text{ cm}^3 \text{ mol}^{-1} \text{ K}$  with  $S_{Co} = 3/2$  and  $g_{Co} = 2.0$ ]. Upon cooling,  $\chi_M T$  continuously decreases to reach a minimum of 3.90 cm<sup>3</sup> mol<sup>-1</sup> K at 12.0 K, and then it slightly increases up to 4.43 cm<sup>3</sup> mol<sup>-1</sup> K at 2.0 K. The increase of  $\chi_M T$  in the low-temperature region is indicative of a weak ferromagnetic intradimer interaction, whereas the decrease of  $\chi_M T$  in the high-temperature region is due to the SOC of the orbitally degenerate, high-spin Co<sup>II</sup> ion in a distorted octahedral coordination geometry, as found in related mononuclear high-spin octahedral cobalt(II) complexes.<sup>4</sup>

The magnetic susceptibility data of **5** were analyzed through a spin Hamiltonian for a dimer model which includes the SOC of the  ${}^{4}T_{1g}$  ground state of the octahedral high-spin Co<sup>II</sup> ions, together with the splitting of the T<sub>1g</sub> orbital term into a singlet (A<sub>1</sub>) and a doublet (E) terms due to the axial distortion [eqn (S2) with  $S_1 = S_2 = S_{Co} = 3/2$  and  $L_1 = L_2 = L_{Co} = 1$ ], where *J* is the magnetic coupling parameter,  $\lambda$  is the spin-orbit coupling parameter,  $\Lambda$  is the axial orbital splitting, and  $\alpha$  is an orbital reduction factor defined as  $\alpha = A\kappa$ .<sup>3</sup> The  $\kappa$  parameter considers the reduction of the orbital momentum caused by covalency effects ( $0 < \kappa \le 1$ ), while the *A* parameter takes into account the admixture between the excited  ${}^{4}T_{1g}(P)$  and the ground  ${}^{4}T_{1g}(F)$  levels when using the T<sub>1</sub> and P term isomorphism (*A* varies between 1.0 and 1.5 for the strong and weak crystal field limits, respectively).<sup>4</sup>

$$\mathbf{H} = -J \mathbf{S}_{1} \cdot \mathbf{S}_{2} + \alpha \lambda \sum_{i=1,2} \mathbf{L}_{i} \cdot \mathbf{S}_{i} + \Delta \sum_{i=1,2} \mathbf{L}_{zi}^{2} + \beta H \sum_{i=1,2} (\alpha \mathbf{L}_{i} + g_{e} \mathbf{S}_{i})$$
(S2)

A good fit was obtained by full-matrix diagonalization techniques<sup>5</sup> with  $J = +1.1 \text{ cm}^{-1}$ ,  $\lambda = -132 \text{ cm}^{-1}$ ,  $\Delta = 109 \text{ cm}^{-1}$ , and  $\alpha = A\kappa = 1.10$  (solid line in Fig. S2). The value of A can be calculated from the

<sup>(4)</sup> F. Lloret, M. Julve, J. Cano, R. Ruiz-García and E. Pardo, Inorg. Chim. Acta, 2008, 361, 3432.

<sup>(5)</sup> J. Cano, VPMAG package, University of Valencia, Valencia, Spain, 2003.

crystal field parameters obtained from the analysis of the electronic spectrum of **5** through eqn (S3) and (S4) ( $Dq = 10725 \text{ cm}^{-1}$  and  $B = 745 \text{ cm}^{-1}$ ).<sup>1</sup> The calculated A value is 1.37 and then  $\kappa = 0.79$ .

$$A = (1.5 - c^2)/(1 + c^2)$$
(S3)

$$c = 0.75 + 1.875(B/Dq) - [1 + 1.8(B/Dq) + 2.25(B/Dq)^{2}]^{1/2}$$
(S4)

The calculated values of *J*,  $\lambda$ ,  $\Delta$ , and  $\kappa$  for **5** agree with those found for **3** (*J* = +1.0 cm<sup>-1</sup>,  $\lambda$  = -116.3 cm<sup>-1</sup>,  $\Delta$  = 108 cm<sup>-1</sup>, and  $\kappa$  = 0.79 with *A* = 1.4).<sup>4</sup> The absolute values of the spin-orbit coupling parameter for these dicobalt(II) triple mesocates are indeed lower than that of the free ion ( $\lambda$  = -180 cm<sup>-1</sup>) because of the metal-ligand covalency. Likewise, the strongly reduced values of the orbital reduction parameter reveal a large covalency of the M–N and M–O bonds (to be compared with  $\kappa$  = 1 for the free ion), which is ultimately responsible for the strong delocalization of the spin density of the metal onto the phenylenediamidate bridges.



**Fig. S2** Temperature dependence of  $\chi_M T$  for 4 (O) and 5 ( $\Box$ ). The solid lines are the best fit curves.

Entry Complex Туре Topology М Geometry L  $d^a$  / Å  $J^{b}/cm^{-1}$ Ref. 6.93  $Na_4[Cu_2L_2] \cdot 18H_2O$ mesocate double  $Cu^{II}(d^9)$ < 1.0 16a 1  $O_{\rm h}/D_{\rm 4h}$ -C 2  $Na_4[Cu_2L_2]\cdot 20H_2O$ mesocate double  $Cu^{II}(d^9)$  $O_{\rm h}/D_{\rm 4h}$ n.a. < 1.0 16b  $Ni^{II}$  (d<sup>8</sup>, hs) 3 Na<sub>4</sub>[Ni<sub>2</sub>L<sub>2</sub>] · 15H<sub>2</sub>O double 6.95 16b  $O_{\rm h}$ -14mesocate 4  $Na_4[Co_2L_2] \cdot 12H_2O$ double  $Co^{II}(d^7, hs)$ -0.9 16b mesocate  $O_{\rm h}$ n.a  $Mn^{II}$  (d<sup>5</sup>, hs) 5  $Na_4[Mn_2L_2] \cdot 10H_2O$ double 16b  $O_{\rm h}$ -0.4mesocate n.a. 6  $[Cu_2L_2] \cdot 2CHCl_3$ mesocate double  $Cu^{II}(d^9)$  $T_{\rm d}/D_{\rm 4h}$ 7.44 -1.0 16c 7  $[Cu_2L_2]$ double  $Cu^{II}(d^9)$ -0.9 mesocate  $T_{\rm d}/D_{\rm 4h}$ n.a 16c  $[Cu_2L_2]$ double  $Cu^{II}(d^9)$ -1.1 8 mesocate  $T_{\rm d}/D_{\rm 4h}$ 16c n.a 9  $[Ni_2L_2]\cdot 3H_2O$ mesocate double Ni<sup>II</sup> (d<sup>8</sup>, hs)  $T_{\rm d}$ n.a. -2.8 16c 10 double Ni<sup>II</sup> (d<sup>8</sup>, hs) -2.7  $[Ni_2L_2]\cdot 3H_2O$ mesocate  $T_{\rm d}$ 16c n.a.  $Ni^{II}$  (d<sup>8</sup>, hs) 11  $[Ni_2L_2]$ mesocate double  $T_{\rm d}$ n.a. -2.9 16c 12  $[\text{Co}_2\text{L}_2]\cdot\text{CHCl}_3$ double  $Co^{II}(d^7, hs)$  $T_{\rm d}$ 7.26 -1.3 mesocate 16c  $Co^{II}(d^7, hs)$ 13  $[Co_2L_2]\cdot 4H_2O$ mesocate double  $T_{\rm d}$ n.a. -1.216c 14  $[Co_2L_2]$ double  $Co^{II} (d^7, hs)$  $T_{\rm d}$ -1.416c mesocate n.a. 15 [Fe<sub>2</sub>L<sub>2</sub>(NO<sub>3</sub>)<sub>2</sub>] double Fe<sup>III</sup> (d<sup>5</sup>, hs)  $O_{\rm h}$ 7.90 +0.416d mesocate 16 [Cu<sub>2</sub>L<sub>2</sub>] · 2MeCN helicate double  $Cu^{II}(d^9)$  $T_{\rm d}$ 12.02  $-0.025^{\circ}$ 17 Cu<sup>II</sup> (d<sup>9</sup>) 17  $Li_4[Cu_2L_2]\cdot 10H_2O$ double -95 18a  $D_{4h}$ mesocate n.a  $D_{
m 4h}$ 18  $Na_4[Cu_2L_2] \cdot 11H_2O$ mesocate double  $Cu^{II}(d^9)$ 7.91 -81 18a 19  $(Ph_4P)_4[Cu_2L_2] \cdot 8H_2O$  $D_{\rm 4h}$ double  $Cu^{II}(d^9)$ 18a mesocate n.a. -94 20  $Li_4[Cu_2L_2]\cdot 12H_2O$ mesocate double  $Cu^{II}(d^9)$  $D_{\rm 4h}$ n.a. -11.5 18a

 Table S1 Selected magnetostructural data for double- and triple-stranded, dinuclear helicates and mesocates of late and middle 3d metal ions with coordinating group-substituted aromatic diamines, diimines, and diamides as bridging ligands.

## Electronic Supplementary Material (ESI) for CrystEngComm This journal is The Royal Society of Chemistry 2012

| 21 | $Na_4[Cu_2L_2]\cdot 12H_2O$       | mesocate | double | $\mathrm{Cu}^{\mathrm{II}}(\mathrm{d}^9)$                                      | $D_{ m 4h}$      | $\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$ | 12.19 | -9.5               | 18a |
|----|-----------------------------------|----------|--------|--------------------------------------------------------------------------------|------------------|-----------------------------------------------------------------------------|-------|--------------------|-----|
| 22 | $(Bu_4N)_4[Cu_2L_2]\cdot 10H_2O$  | mesocate | double | $\mathrm{Cu}^{\mathrm{II}}\left(\mathrm{d}^{9} ight)$                          | $D_{ m 4h}$      |                                                                             | n.a.  | -8.7               | 18a |
| 23 | $Li_4[Cu_2L_2]\cdot 12H_2O$       | mesocate | double | $Cu^{II}(d^9)$                                                                 | $D_{ m 4h}$      |                                                                             | n.a.  | -20.5              | 18b |
| 24 | $(Ph_4P)_4[Cu_2L_2]\cdot 8H_2O$   | mesocate | double | $Cu^{II}(d^9)$                                                                 | $D_{ m 4h}$      |                                                                             | 8.33  | -20.7              | 18b |
| 25 | $Li_4[Cu_2L_2]\cdot 12H_2O$       | mesocate | double | $\mathrm{Cu}^{\mathrm{II}}\left(\mathrm{d}^9 ight)$                            | $D_{ m 4h}$      |                                                                             | n.a.  | -21.2              | 18b |
| 26 | $(Ph_4P)_4[Cu_2L_2]\cdot 4H_2O$   | mesocate | double | $Cu^{II}(d^9)$                                                                 | $D_{ m 4h}$      |                                                                             | n.a.  | -23.0              | 18b |
| 27 | $(Bu_4N)_4[Cu_2L_2]$              | mesocate | double | $\mathrm{Cu}^{\mathrm{II}}\left(\mathrm{d}^{9} ight)$                          | $D_{ m 4h}$      |                                                                             | 12.48 | -23.9              | 18c |
| 28 | [Co <sub>2</sub> L <sub>3</sub> ] | mesocate | triple | $\operatorname{Co}^{III}(d^6, ls)$                                             | $O_{ m h}$       |                                                                             | 6.73  | -21.1 <sup>d</sup> | 19a |
| 29 | $[Fe_2L_3]$                       | mesocate | triple | $\mathrm{Fe}^{\mathrm{III}}\left(\mathrm{d}^{5},\mathrm{hs}\right)$            | $O_{ m h}$       |                                                                             | 6.90  | -11.0 <sup>d</sup> | 19a |
| 30 | $[Mn_2L_3]$                       | mesocate | triple | $Mn^{IV}(d^3)$                                                                 | $O_{\rm h}$      |                                                                             | 6.75  | n.a. <sup>d</sup>  | 19b |
| 31 | [Cu <sub>2</sub> L <sub>2</sub> ] | mesocate | double | $\mathrm{Cu}^{\mathrm{II}}\left(\mathrm{d}^{9} ight)$                          | $D_{ m 4h}$      |                                                                             | 6.70  | n.a. <sup>e</sup>  | 20a |
| 32 | $[Ni_2L_2]$                       | mesocate | double | $\mathrm{Ni}^{\mathrm{II}}(\mathrm{d}^{8},\mathrm{ls})$                        | $D_{ m 4h}$      |                                                                             | n.a.  |                    | 20a |
| 33 | [Co <sub>2</sub> L <sub>3</sub> ] | mesocate | triple | $\operatorname{Co}^{\operatorname{III}}(\operatorname{d}^6,\operatorname{ls})$ | $O_{\rm h}$      |                                                                             | 6.72  | +26 <sup>d</sup>   | 20a |
| 34 | $[Fe_2L_3]$                       | mesocate | triple | $\mathrm{Fe}^{\mathrm{III}}(\mathrm{d}^{5},\mathrm{hs})$                       | $O_{\rm h}$      |                                                                             | 6.92  | n.a. <sup>d</sup>  | 20a |
| 35 | [Cr <sub>2</sub> L <sub>3</sub> ] | mesocate | triple | $\operatorname{Cr}^{\operatorname{III}}(\operatorname{d}^{3})$                 | $O_{ m h}$       |                                                                             | n.a.  | n.a. <sup>e</sup>  | 20a |
| 36 | $[Mn_2L_3]$                       | mesocate | triple | $Mn^{IV}(d^3)$                                                                 | $O_{\mathrm{h}}$ |                                                                             | 6.76  | -6.5 <sup>d</sup>  | 20b |
| 37 | $[Fe_2L_3](PF_6)_4$               | helicate | triple | $\mathrm{Fe}^{\mathrm{II}}(\mathrm{d}^6,\mathrm{hs})$                          | $O_{\mathrm{h}}$ |                                                                             | 11.40 | n.a. <sup>f</sup>  | 21  |
| 38 | $[Fe_2L_3](BF_4)_4$               | helicate | triple | $\operatorname{Fe}^{II}(d^6, hs)$                                              | $O_{ m h}$       |                                                                             | 11.56 | n.a. <sup>f</sup>  | 21  |
| 39 | $[Fe_2L_3](ClO_4)_4$              | helicate | triple | $\operatorname{Fe}^{II}(d^6, hs)$                                              | $O_{\rm h}$      |                                                                             | 11.58 | n.a. <sup>f</sup>  | 21  |
| 40 | $[Ni_{2}L_{3}](PF_{6})_{4}$       | helicate | triple | Ni <sup>II</sup> (d <sup>8</sup> , hs)                                         | $O_{ m h}$       |                                                                             | 11.54 | < 1.0              | 21  |
| 41 | $[Co_2L_3](PF_6)_4$               | helicate | triple | $\operatorname{Co}^{II}(d^7, hs)$                                              | $O_{ m h}$       |                                                                             | 11.54 | < 1.0              | 21  |
| 42 | $[Mn_2L_3](PF_6)_4$               | helicate | triple | $\mathrm{Mn}^{II}(\mathrm{d}^{5},\mathrm{hs})$                                 | $O_{\rm h}$      |                                                                             | 11.66 | < 1.0              | 21  |
|    |                                   |          |        |                                                                                |                  | IVI ~                                                                       |       |                    |     |

### Electronic Supplementary Material (ESI) for CrystEngComm This journal is The Royal Society of Chemistry 2012

| 43 | [Cu <sub>2</sub> L <sub>2</sub> ]                                                                      | mesocate | double | $Cu^{II}(d^9)$                                                                 | $D_{\rm 4h}/T_{\rm d}$ | 7.27  | +14.6 | 22a   |
|----|--------------------------------------------------------------------------------------------------------|----------|--------|--------------------------------------------------------------------------------|------------------------|-------|-------|-------|
| 44 | $[Cu_2L_2]\cdot 2CHCl_3\cdot 2H_2O$                                                                    | mesocate | double | $Cu^{II}(d^9)$                                                                 | $D_{\rm 4h}/T_{\rm d}$ | 10.78 | -2.2  | 22b   |
| 45 | $[Cu_2L_2]\cdot 2H_2O$                                                                                 | mesocate | double | $Cu^{II}(d^9)$                                                                 | $D_{\rm 4h}/T_{\rm d}$ | 7.56  | +21.1 | 23a   |
| 46 | $[Ni_2(HL)_3]PF_6\cdot 21H_2O$                                                                         | mesocate | triple | Ni <sup>II</sup> (d <sup>8</sup> , hs)                                         | $O_{\rm h}$            | 6.93  | +3.6  | 23a   |
| 47 | $[\text{Co}(\text{H}_2\text{O})_6][\text{Ni}_2\text{L}_3] \cdot \text{THF} \cdot 10\text{H}_2\text{O}$ | mesocate | triple | Ni <sup>II</sup> (d <sup>8</sup> , hs)                                         | $O_{\rm h}$            | 6.92  | +3.6  | 23a   |
| 48 | $[Ag_2(H_2O)][Ni_2L_3] \cdot 11H_2O$                                                                   | mesocate | triple | $Ni^{II}(d^8, hs)$                                                             | $O_{\rm h}$            | 6.96  | +2.9  | 23a   |
| 49 | $[\mathrm{Ni}_2(\mathrm{HL})_3]\mathrm{ClO}_4\cdot 15\mathrm{H}_2\mathrm{O}$                           | mesocate | triple | $Ni^{II}(d^8, hs)$                                                             | $O_{\mathrm{h}}$       | 6.93  | +3.1  | 23b   |
| 50 | $[Co_2L_3]\cdot 19H_2O$                                                                                | mesocate | triple | $\operatorname{Co}^{\operatorname{III}}(\operatorname{d}^6,\operatorname{ls})$ | $O_{ m h}$             | 6.85  |       | 23b   |
| 51 | $Na_4[Cu_2L_2]\cdot 10H_2O$                                                                            | mesocate | double | $Cu^{II}(d^9)$                                                                 | $D_{ m 4h}$            | 6.82  | +16.0 | 25    |
| 52 | $(Bu_4N)_4[Cu_2L_2]\cdot 4H_2O$                                                                        | mesocate | double | $Cu^{II}(d^9)$                                                                 | $D_{\rm 4h}/T_{\rm d}$ | 7.20  | +16.4 | 13i   |
| 53 | $Li_4[Ni_2L_3]\cdot 28H_2O$                                                                            | mesocate | triple | $Ni^{II}$ ( $d^8$ , hs)                                                        | $O_{ m h}$             | 6.86  | +3.2  | 26b   |
| 54 | $Li_4[Co_2L_3]\cdot 37H_2O$                                                                            | mesocate | triple | $\operatorname{Co}^{II}(d^7, hs)$                                              | $O_{\rm h}$            | 6.85  | +1.0  | 26a,b |

<sup>*a*</sup> Intermetallic distance. <sup>*b*</sup> Magnetic coupling parameter ( $H = -JS_1 \cdot S_2$  with  $S_1 = S_2 = S_M$ ). <sup>*c*</sup> Intermolecular magnetic coupling. <sup>*d*</sup> Radical-radical coupling.

<sup>e</sup> Metal-radical coupling. <sup>f</sup> Spin crossover magnetic behavior.