Supplementary Material (ESI) for CrystEngComm

A series of coordination polymers based on flexible 5-carboxy-1-(4'-carboxybenzyl)-2-oxidopyridinium and structurally related N-donor ligands: syntheses, structures and photoluminescent properties

Yun-Xue Zhang, Jin Yang,* Wei-Qiu Kan, and Jian-Fang Ma*

Key Lab of Polyoxometalate Science, Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China

* Correspondence authors
E-mail: yangjinnenu@yahoo.com.cn (J. Yang)
E-mail: jianfangma@yahoo.com.cn (J.-F. Ma)
Fax: +86-431-85098620 (J.-F. Ma)

Zn(1)-O(5)	1.976(3)	Zn(1)-O(1) ^{#1}	1.978(3)
Zn(1)-N(2)	2.009(3)	$Zn(1)-N(5)^{\#2}$	2.020(3)
O(5)-Zn(1)-O(1) ^{#1}	104.35(13)	O(5)-Zn(1)-N(2)	109.67(14)
$O(1)^{\#1}$ -Zn(1)-N(2)	101.70(13)	O(5)-Zn(1)-N(5) ^{#2}	124.62(14)
$O(1)^{\#1}$ -Zn(1)-N(5) ^{#2}	108.25(14)	N(2)-Zn(1)-N(5) ^{#2}	105.96(15)

Table S1. Selected bond distances (Å) and angles (°) for 1.

Symmetry transformations used to generate equivalent atoms: ^{#1} x-1/2, y+1/2, z; ^{#2} -x+5/2, y+1/2, -z+1/2.

Table S2. Selected bond distances (Å) and angles (°) for 2.

Co(1)-O(5)	2.008(2)	Co(1)-N(2)	2.030(16)
Co(1)-O(1) ^{#1}	2.0314(19)	Co(1)-O(2) ^{#2}	2.0595(19)
Co(1)-O(4) ^{#3}	2.076(2)		
O(5)-Co(1)-N(2)	102.9(5)	O(5)-Co(1)-O(1) ^{#1}	91.64(9)
N(2)-Co(1)-O(1) ^{#1}	103.5(7)	$O(1)^{\#1}-Co(1)-O(4)^{\#3}$	87.74(8)
O(5)-Co(1)-O(2) ^{#2}	87.78(9)	N(2)-Co(1)-O(2) ^{#2}	94.5(7)
$O(1)^{\#1}-Co(1)-O(2)^{\#2}$	161.63(8)	$O(2)^{#2}-Co(1)-O(4)^{#3}$	87.29(8)
O(5)-Co(1)-O(4) ^{#3}	162.29(8)	N(2)-Co(1)-O(4) ^{#3}	94.4(5)

Symmetry transformations used to generate equivalent atoms: $^{#1}$ x, -y, z+1/2; $^{#2}$ -x, y+1, -z+1/2; $^{#3}$ -x, -y+1, -z+1.

Table S3a. Selected bond distances (Å) and angles (°) for 3.

Zn(1)-O(4)	1.965(5)	Zn(1)-O(1) ^{#1}	2.004(5)
Zn(1)-N(3)	2.073(5)	Zn(1)-N(4)	2.158(6)
Zn(1)-N(2)	2.178(6)		
O(4)-Zn(1)-O(1) ^{#1}	92.9(3)	O(4)-Zn(1)-N(3)	124.7(2)
$O(1)^{#1}$ -Zn(1)-N(3)	142.4(2)	O(4)-Zn(1)-N(4)	103.0(2)
$O(1)^{#1}$ -Zn(1)-N(4)	98.0(2)	N(3)-Zn(1)-N(4)	75.2(2)
O(4)-Zn(1)-N(2)	96.4(2)	$O(1)^{\#1}$ -Zn(1)-N(2)	103.0(2)

D-H···A	d(D-H)	$d(H \cdots A)$	$d(D \cdots A)$	<(DHA)
O(1W)-H(1B)O(5)	0.92	1.74	2.640(9)	166(3)
$O(1W)-H(1A)\cdots O(3)^{\#3}$	0.97	1.85	2.793(10)	165(4)

Symmetry transformations used to generate equivalent atoms: $^{#1}$ x-1/2, -y+1/2, z-1/2; $^{#2}$ x+1/2, -y+1/2, z+1/2; $^{#3}$ -x+1, -y, -z+1.

Table S4. Selected bond distances (Å) and angles (°) for 4.

Co(1)-O(1) ^{#1}	2.002(3)	Co(1)-N(3)	2.074(3)
Co(1)-O(5)	2.098(3)	Co(1)-N(2)	2.148(4)
Co(1)-N(4)	2.153(3)	Co(1)-O(4)	2.252(3)
O(1) ^{#1} -Co(1)-N(3)	98.62(13)	O(1) ^{#1} -Co(1)-O(5)	92.87(13)
N(3)-Co(1)-O(5)	167.54(14)	$O(1)^{#1}-Co(1)-N(2)$	105.93(14)
N(3)-Co(1)-N(2)	75.29(14)	O(5)-Co(1)-N(2)	96.98(11)
O(1) ^{#1} -Co(1)-N(4)	89.82(13)	N(3)-Co(1)-N(4)	74.62(13)
O(5)-Co(1)-N(4)	110.40(13)	N(2)-Co(1)-N(4)	147.76(14)
O(1) ^{#1} -Co(1)-O(4)	149.17(11)	N(3)-Co(1)-O(4)	110.12(13)
O(5)-Co(1)-O(4)	59.78(12)	N(2)-Co(1)-O(4)	92.30(14)
N(4)-Co(1)-O(4)	87.33(13)		

Symmetry transformation used to generate equivalent atoms: $^{#1}$ x-1/2, -y+3/2, z+1/2.

Table S5. Selected bond distances (Å) and angles (°) for 5.

		e ()	
Cd(1)-O(5)	2.2439(19)	Cd(1)-O(2) ^{#1}	2.295(2)
Cd(1)-N(2)	2.308(3)	Cd(1)-N(3)	2.335(2)
Cd(1)-O(1W)	2.344(2)	Cd(1)-O(1) ^{#1}	2.415(2)
O(5)-Cd(1)-O(2) ^{#1}	97.30(8)	O(5)-Cd(1)-N(2)	99.02(8)
$O(2)^{\#1}-Cd(1)-N(2)$	163.37(9)	O(5)-Cd(1)-N(3)	171.49(9)

$O(2)^{\#1}-Cd(1)-N(3)$	91.21(9)	N(2)-Cd(1)-N(3)	72.48(9)
O(5)-Cd(1)-O(1W)	90.64(8)	O(2) ^{#1} -Cd(1)-O(1W)	89.59(8)
N(2)-Cd(1)-O(1W)	93.41(8)	N(3)-Cd(1)-O(1W)	89.56(8)
O(5)-Cd(1)-O(1) ^{#1}	96.36(8)	$O(2)^{\#1}-Cd(1)-O(1)^{\#1}$	55.57(8)
N(2)-Cd(1)-O(1) ^{#1}	119.01(9)	N(3)-Cd(1)-O(1) ^{#1}	88.31(8)
O(1W)-Cd(1)-O(1) ^{#1}	145.02(8)		

Symmetry transformation used to generate equivalent atoms: ^{#1}-x+1, -y+1, -z+1; ^{#2} x+1, y, z; ^{#3} -x+1, -y+1, -z+2;

Table S6a. Selected bond distan	ces (Å) and angles (°) for 6.
---------------------------------	-------------------------------

Cd(1)-O(6)	2.247(4)	Cd(1)-O(6) ^{#1}	2.247(4)
Cd(1)-O(1)	2.313(5)	$Cd(1)-O(1)^{\#1}$	2.313(5)
$Cd(1)-O(5)^{#2}$	2.323(6)	$Cd(1)-O(5)^{\#3}$	2.323(6)
$Cd(2)-O(4)^{\#2}$	2.253(6)	Cd(2)-O(6)	2.292(5)
Cd(2)-O(6) ^{#4}	2.297(5)	Cd(2)-N(2)	2.334(6)
Cd(2)-O(2)	2.342(5)	Cd(2)-O(1W)	2.382(6)
O(6)-Cd(1)-O(1)	98.30(17)	$O(6)^{\#1}-Cd(1)-O(1)$	81.70(17)
O(6)-Cd(1)-O(1) ^{#1}	81.70(17)	$O(6)^{\#1}-Cd(1)-O(1)^{\#1}$	98.30(17)
$O(6)-Cd(1)-O(5)^{#2}$	91.06(19)	$O(6)^{\#1}-Cd(1)-O(5)^{\#2}$	88.94(19)
O(1)-Cd(1)-O(5) ^{#2}	89.9(2)	$O(1)^{\#1}-Cd(1)-O(5)^{\#2}$	90.1(2)
$O(6)-Cd(1)-O(5)^{\#3}$	88.94(19)	$O(6)^{\#1}-Cd(1)-O(5)^{\#3}$	91.06(19)
O(1)-Cd(1)-O(5) ^{#3}	90.1(2)	$O(1)^{\#1}-Cd(1)-O(5)^{\#3}$	89.9(2)
$O(4)^{#2}-Cd(2)-O(6)$	102.17(18)	$O(4)^{#2}-Cd(2)-O(6)^{#4}$	171.6(2)
O(6)-Cd(2)-O(6) ^{#4}	84.05(16)	$O(4)^{#2}-Cd(2)-N(2)$	82.2(2)
O(6)-Cd(2)-N(2)	171.7(2)	$O(6)^{#4}-Cd(2)-N(2)$	92.3(2)
$O(4)^{#2}-Cd(2)-O(2)$	102.2(2)	O(6)-Cd(2)-O(2)	85.16(19)
$O(6)^{#4}-Cd(2)-O(2)$	83.82(19)	N(2)-Cd(2)-O(2)	87.0(2)
$O(4)^{#2}-Cd(2)-O(1W)$	87.6(2)	O(6)-Cd(2)-O(1W)	81.40(19)
O(6) ^{#4} -Cd(2)-O(1W)	87.73(19)	N(2)-Cd(2)-O(1W)	106.0(2)

O(2)-Cd(2)-O(1W) 164.8(2)

D-H···A	d(D-H)	$d(H^{\dots}A)$	$d(D \cdots A)$	<(DHA)
O(1W)-H(1A)····O(2) ^{#4}	0.84(9)	1.97(10)	2.807(8)	172(10)
O(1W)-H(1B)····O(3) ^{#5}	0.897(10)	1.81(2)	2.690(8)	167(8)

Table S6b. Hydrogen bonds for 6 (Å and $^{\circ}$).

Symmetry transformation used to generate equivalent atoms: ^{#1} -x, -y, -z+1; ^{#2} x-1/2, -y, z-1/2; ^{#3} -x+1/2, y,-z+3/2; ^{#4} -x, -y+1, -z+1; ^{#5} x+1/2, -y, z-1/2.

Table S7. Selected bond distances (Å) and angles (°) for 7.

Pb(1)-O(4)	2.350(6)	$Pb(1)-O(1)^{\#1}$	2.352(6)	
$Pb(1)-O(2)^{\#2}$	2.422(6)	Pb(1)-O(1W)	2.52(2)	
$Pb(1)-O(3)^{\#3}$	2.748(7)			
O(4)-Pb(1)-O(1) ^{#1}	77.9(2)	$O(4)-Pb(1)-O(2)^{\#2}$	76.1(2)	
O(1) ^{#1} -Pb(1)-O(2)#2	95.6(2)	O(4)-Pb(1)-O(1W)	78.5(4)	
O(1) ^{#1} -Pb(1)-O(1W)	92.2(4)	O(2) ^{#2} -Pb(1)-O(1W)	151.1(4)	
O(4)-Pb(1)-O(3) ^{#3}	145.3(2)	$O(1)^{\#1}$ -Pb(1)-O(3) ^{#3}	84.6(2)	
$O(2)^{#2}$ -Pb(1)-O(3) ^{#3}	76.1(2)	$O(1W)-Pb(1)-O(3)^{\#3}$	132.4(4)	

Symmetry transformation used to generate equivalent atoms: $^{#1}$ -x+3/2, y+1/2, -z+1/2; $^{#2}$ -x+1/2, y+1/2, -z+1/2; $^{#3}$ x+1, y+1, z.

Scheme S1 Coordination modes of the H₂L ligand.

Fig. S1 View of the 3D framework constructed by the L anions and biim-4 ligands.

Fig. S2 The 1D infinite chain constructed by L anions and Zn(II) ions.

(b)

Fig. S3 (a) Coordination environment of the Co(II) ion in **4** (30% probability displacement ellipsoids). Symmetry code: ^{#1} x-1/2, -y+3/2, z+1/2. (b) The 1D infinite chain constructed by L anions and Co(II) ions. (c) View of the 1D chain of compound **4**. (d) View of the 2D supramolecular layer formed by π - π interactions in **4**.

Fig. S4 The TGA curves of compounds 1–7.

Fig. S5 The simulated (blue) and experimental (black) PXRD patterns for compounds **1-7**.