Supplementary Information

Architectures of transition metal(II) polymeric frameworks constructed

by 3- fluorophthalic acid and 1,3-bis(4-pyridyl)propane: synthesis, crystal

structures and properties

Yu -E Cha^{*a*}, Xia Li^{*}, ^{*a*}Xu Ma^{*a*}, Chong-Qing Wan^{*a*}, Xue-Bin Deng^{*b*}, Lin-Pei Jin ^{*b*}

complex 1					
Cu(1)-O(3)#1	1.9330(19)	Cu(1)-N(2)	1.990(2)		
Cu(1)-O(2)	1.9915(19)	Cu(1)-N(1)	2.015(2)		
Cu(1)-O(1)	2.418(2)				
O(3)#1-Cu(1)-N(2)	96.61(9)	O(3)#1-Cu(1)-O(2)	159.23(9)		
N(2)-Cu(1)-O(2)	89.48(9)	O(3)#1-Cu(1)-N(1)	94.82(9)		
N(2)-Cu(1)-N(1)	146.65(10)	O(2)-Cu(1)-N(1)	90.78(9)		
O(3)#1-Cu(1)-O(1)	100.46(8)	N(2)-Cu(1)-O(1)	108.53(9)		
O(2)-Cu(1)-O(1)	58.82(7)	N(1)-Cu(1)-O(1)	99.98(9)		
complex 2					
Cu(1)-O(3)	1.946(9)	Cu(1)-O(9)	1.982(16)		
Cu(1)-O(5)	1.997(11)	Cu(1)-N(1)	2.051(11)		
Cu(1)-N(2)	2.115(12) Cu(1)-O(6)		2.153(14)		
Cu(2)-N(3)	3) 1.998(10) Cu(2)-O(1)		2.001(8)		
Cu(2)-O(10)	2.010(8) Cu(2)-O(7) 2.03		2.036(8)		
Cu(2)-N(4)	2.181(11)				
O(3)-Cu(1)-O(9)	95.9(6)	O(3)-Cu(1)-O(5)	159.6(5)		
O(9)-Cu(1)-O(5)	1)-O(5) 71.9(6) O(3)-Cu(1)-N(1)		96.8(4)		
O(9)-Cu(1)-N(1)	u(1)-N(1) 85.8(6) O(5)-Cu(1)-N(1) 98.5(5)		98.5(5)		
O(3)-Cu(1)-N(2)	93.5(5)	O(9)-Cu(1)-N(2)	169.0(6)		
O(5)-Cu(1)-N(2)	97.4(5)	N(1)-Cu(1)-N(2)	98.8(5)		
O(3)-Cu(1)-O(6)	100.9(4)	O(9)-Cu(1)-O(6)	77.6(6)		
O(5)-Cu(1)-O(6)	61.2(5)	N(1)-Cu(1)-O(6)	156.8(4)		
N(2)-Cu(1)-O(6)	95.1(5)	N(3)-Cu(2)-O(1)	94.0(4)		
N(3)-Cu(2)-O(10)	179.0(5)	O(1)-Cu(2)-O(10)	85.5(3)		
N(3)-Cu(2)-O(7)	91.9(4)	O(1)-Cu(2)-O(7)	151.3(4)		
O(10)-Cu(2)-O(7)	88.9(4)	N(3)-Cu(2)-N(4)	92.4(4)		
O(1)-Cu(2)-N(4)	107.5(4)	O(10)-Cu(2)-N(4)	87.0(4)		
O(7)-Cu(2)-N(4)	100.3(4)				

Table S1 Bond lengths [Å] and angles [°] for complexes 1-5

^a Department of Chemistry, Capital Normal University, Beijing 100048, P. R.China Tel.: +86 10 68902320; fax: +86 10 68902320.Email: <u>xiali@mail.cnu.edu.cn</u> (Xia Li).

^b Department of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.

	comp	lex 3	
Cd(1)-N(1)	2.316(3)	Cd(1)-O(1) 2.321(2)	
Cd(1)-N(2)#1	2.335(3)	Cd(1)-O(4)	2.419(3)
Cd(1)-O(3)	2.453(3)	Cd(1)-O(5)	2.517(3)
Cd(1)-O(2)	2.583(3)	Cd(2)-O(8)#2	2.184(3)
Cd(2)-O(6)	2.277(2)	Cd(2)-O(10)	2.349(3)
Cd(2)-O(7)	2.563(2)	Cd(2)-N(3)	2.347(3)
Cd(2)-N(4)#3	2.303(3)		
N(1)-Cd(1)-O(1)	132.37(9)	N(1)-Cd(1)-N(2)#1	92.69(10)
O(1)-Cd(1)-N(2)#1	107.67(10)	N(1)-Cd(1)-O(4)	86.60(10)
O(1)-Cd(1)-O(4)	125.11(9)	N(2)#1-Cd(1)-O(4)	106.58(11)
N(1)-Cd(1)-O(3)	138.18(10)	O(1)-Cd(1)-O(3)	86.21(9)
N(2)#1-Cd(1)-O(3)	88.47(10)	O(4)-Cd(1)-O(3)	53.39(10)
N(1)-Cd(1)-O(5)	85.26(9)	O(1)-Cd(1)-O(5)	75.74(9)
N(2)#1-Cd(1)-O(5)	176.53(10)	O(4)-Cd(1)-O(5)	70.54(10)
O(3)-Cd(1)-O(5)	91.19(9) N(1)-Cd(1)-O(2)		84.04(9)
O(1)-Cd(1)-O(2)	52.76(8) N(2)#1-Cd(1)-O(2)		93.99(10)
O(4)-Cd(1)-O(2)	(2) 157.76(10) O(3)-Cd(1)-O(2)		137.61(9)
O(5)-Cd(1)-O(2)	88.59(9) O(8)#2-Cd(2)-O(6)		99.79(9)
O(8)#2-Cd(2)-N(4)#3	99.09(10)	O(6)-Cd(2)-N(4)#3	157.36(10)
O(8)#2-Cd(2)-N(3)	110.82(11)	O(6)-Cd(2)-N(3)	99.70(10)
N(4)#3-Cd(2)-N(3)	85.07(11)	O(8)#2-Cd(2)-O(10)	90.09(11)
O(6)-Cd(2)-O(10)	85.28(9)	N(4)#3-Cd(2)-O(10)	82.31(10)
N(3)-Cd(2)-O(10)	157.07(10)	O(8)#2-Cd(2)-O(7)	152.82(9)
O(6)-Cd(2)-O(7)	53.72(8)	N(4)#3-Cd(2)-O(7)	105.67(9)
N(3)-Cd(2)-O(7)	82.68(10)	O(10)-Cd(2)-O(7)	82.41(9)
	comp	lex 4	
Co(1)-O(6)	2.025(4)	Co(1)-O(2)	2.111(5)
Co(1)-O(1)	2.157(4)	Co(1)-O(5)	2.151(4)
Co(1)-N(2)#1	2.103(5)	Co(1)-N(1)	2.222(5)
Co(2)-O(3)#2	2.006(4)	Co(2)-O(8)	2.106(4)
Co(2)-O(10)	2.189(4) Co(2)-O(9)		2.240(5)
Co(2)-N(3)	2.095(5)	Co(2)-N(4)#3	2.110(5)
O(6)-Co(1)-N(2)#1	101.3(2)	O(6)-Co(1)-N(1)	91.7(2)
N(2)#1-Co(1)-N(1)	90.0(2)	O(6)-Co(1)-O(5)	89.16(18)
N(2)#1-Co(1)-O(5)	87.1(2)	N(1)-Co(1)-O(5)	177.0(2)
O(6)-Co(1)-O(1)	159.00(17)	N(2)#1-Co(1)-O(1)	98.10(19)
N(1)-Co(1)-O(1)	96.27(19)	O(5)-Co(1)-O(1)	83.87(17)
O(6)-Co(1)-O(2)	99.80(18)	N(2)#1-Co(1)-O(2)	158.57(19)
N(1)-Co(1)-O(2)	93.0(2)	O(5)-Co(1)-O(2)	89.63(18)
O(1)-Co(1)-O(2)	60.49(16)	O(6)-Co(1)-C(14)	128.1(2)
N(2)#1-Co(1)-C(14)	128.4(2)	N(1)-Co(1)-C(14)	101.1(2)
O(5)-Co(1)-C(14)	80.6(2)	O(1)-Co(1)-C(14)	31.13(19)
O(2)-Co(1)-C(14)	30.35(18)	O(3)#2-Co(2)-N(3)	98.80(19)

O(3)#2-Co(2)-O(8)	160.24(18) N(3)-Co(2)-O(8)		99.5(2)
O(3)#2-Co(2)-N(4)#3	90.5(2) N(3)-Co(2)-N(4)#3		94.9(2)
O(8)-Co(2)-N(4)#3	95.4(2) O(3)#2-Co(2)-O(10)		88.79(18)
N(3)-Co(2)-O(10)	85.3(2) O(8)-Co(2)-O(10)		85.23(18)
N(4)#3-Co(2)-O(10)	179.3(2)	O(3)#2-Co(2)-O(9)	99.94(18)
N(3)-Co(2)-O(9)	159.18(19)	O(8)-Co(2)-O(9)	60.91(17)
N(4)#3-Co(2)-O(9)	93.9(2)	O(10)-Co(2)-O(9)	86.15(18)
	compl	ex 5	
Ni(1)-O(6)	2.012(3)	Ni(1)-O(5)	2.103(4)
Ni(1)-O(2)	2.126(3)	Ni(1)-O(1)	2.176(4)
Ni(1)-N(1)	2.061(4)	Ni(1)-N(2)#3	2.059(4)
Ni(2)-O(3)#4	1.997(3)	Ni(2)-O(9)	2.102(4)
Ni(2)-O(10)	2.119(4)	Ni(2)-O(8)	2.181(4)
Ni(2)-N(4)#5	2.078(4)	N(3)-Ni(2)	2.045(4)
O(6)-Ni(1)-N(1)	91.55(15)	N(2)#3-Ni(1)-N(1)	91.97(17)
O(6)-Ni(1)-O(5)	89.38(14)	N(2)#3-Ni(1)-O(5)	86.21(18)
N(1)-Ni(1)-O(5)	178.05(18)	O(6)-Ni(1)-O(2)	160.40(14)
N(2)#3-Ni(1)-O(2)	100.11(15)	N(1)-Ni(1)-O(2)	94.97(15)
O(5)-Ni(1)-O(2)	84.69(15)	O(6)-Ni(1)-O(1)	99.84(15)
N(2)#3-Ni(1)-O(1)	161.19(15)	N(1)-Ni(1)-O(1)	93.15(17)
O(5)-Ni(1)-O(1)	88.37(17)	O(2)-Ni(1)-O(1)	61.41(13)
O(6)-Ni(1)-C(1)	129.34(17)	N(2)#3-Ni(1)-C(1)	130.20(17)
N(1)-Ni(1)-C(1)	99.86(16)	O(5)-Ni(1)-C(1)	80.84(17)
O(2)-Ni(1)-C(1)	31.19(15)	O(1)-Ni(1)-C(1)	30.99(16)
O(3)#4-Ni(2)-N(3)	96.97(16)	O(3)#4-Ni(2)-N(4)#5	90.38(16)
N(3)-Ni(2)-N(4)#5	95.32(18)	O(3)#4-Ni(2)-O(9)	161.62(15)
N(3)-Ni(2)-O(9)	100.32(16)	N(4)#5-Ni(2)-O(9)	94.17(17)
O(3)#4-Ni(2)-O(10)	89.41(15)	N(3)-Ni(2)-O(10)	85.41(17)
N(4)#5-Ni(2)-O(10)	179.26(18)	O(9)-Ni(2)-O(10)	85.81(15)
O(3)#4-Ni(2)-O(8)	100.24(14)	N(3)-Ni(2)-O(8)	160.99(15)
N(4)#5-Ni(2)-O(8)	92.60(17)	O(9)-Ni(2)-O(8)	61.80(14)
O(10)-Ni(2)-O(8)	86.73(15)		

Symmetry transformations used to generate equivalent atoms: For **1**: #1: -x+3/2, y+1/2, -z+3/2. For **3**: #1 -x, -y+2, -z; #2: -x, -y+2, -z+1; #3: -x+1, -y+1, -z+1. For **4**: #1 x, y, z+1; #2 -x+1, y+1/2, -z+1; #3 x+1, y, z. For **5**, #1 x, y, z-1; #2 x-1, y, z; #3 x, y, z+1; #4 -x+1, y-1/2, -z+2; #5 x+1,y,z.

14010 02 1194108	sen sona aistanee	(i i) and angle ()	adda for compou	ina e
D-H …A	d(D-H)	d(HA)	<dha< td=""><td>d(DA)</td></dha<>	d(DA)
O10A-H10c…O11	0.850	1.851	176.25	2.700
O10A-H10d…O12	0.850	1.970	175.66	2.818
O11-H11c…O6B	0.850	2.018	163.98	2.845
O11-H11d…O9A	0.850	1.988	164.03	2.815
O12-H12c…O2	0.850	2.042	179.71	2.892

Table S2 Hydrogen bond distance (Å) and angle (°) data for compound **3**

Symmetry transformations used to generate equivalent atoms: A: -x+1, -y+2, -z+1 B: x+1, y, z

(a)

(b)

(d)

Fig. S2. View of the structure of 5. (a) The coordination environments of Ni1 and Ni2, showing coordination conformations of ligands between the Ni(II) ions. H atoms are omitted for clarity. Symmetry code: A x, y, z+1; B -x+1, y-1/2, -z+2; C x+1, y, z. (b) Ni-Fpht right-handed helices.