Examining the Robustness of a Theophylline Cocrystal during Grinding with Additives Heba Abourahma*^a, Jennifer M. Urban^a, Nicole Morozowich^b and Benny Chan^a

^a Department of Chemistry, The College of New Jersey, 2000 Pennington Rd, Ewing, NJ 08628, USA ^b Department of Chemistry, Penn State University, 104 Chemistry Building, University Park, PA 16802

Electronic Supplementary Information

Table of Contents

- S1- PXRD characterization data for experiments involving benzamide (BZA)
- S2- PXRD characterization data for experiments involving benzoic acid (BA)
- S3- PXRD characterization data for experiments involving *p*-nitrophenol (*pNP*)
- S4- PXRD characterization data for experiments involving hydroquinone (HDQ)
- S5- PXRD characterization data for experiments involving *m*-hydroxybenzoic acid (*m*HBA)
- S6- PXRD characterization data for experiments involving *p*-(*N*,*N*-dimethylamino)benzoic acid dMABA
- S7- PXRD characterization data for experiments involving *p*-nitrobenzoic acid (*p*NBA)
- S8- PXRD and DSC characterization data for experiments involving salicylic acid (SA)
- **S9-** PXRD characterization data for experiments involving melamine (MLM)
- S10- PXRD characterization data for experiments involving acetamide (ACA)
- S11- PXRD and DSC characterization data for experiments involving 3,5-dinitrobenzoic acid (dNBA)
- S12- PXRD patterns for dMABA before and after grinding
- S13- PXRD patterns for dNBA before and after grinding
- S14- PXRD patterns for mHBA before and after grinding
- S15- PXRD pattern of TP•ACA cocrystal obtained from solution
- **S16** ¹H NMR spectrum of TP.ACA in DMSO-d₆
- S17. IR spectrum of TP•ACA cocrystal
- S18- PXRD pattern of TP•MLM•DMSO cocrystal crystallized from solution
- **S19.** ¹H NMR spectrum of TP•MLM•DMSO in DMSO-d₆
- S20. Crystal data and structure refinement for TP•MLM•DMSO
- S21. Table of hydrogen bonds for TP•MLM•DMSO
- S22. Crystal structure of TP•MLM•DMSO

S1- PXRD characterization data for experiments involving benzamide (BZA)

Fig.S1b- PXRD patterns for competition experiments involving TP•*p*HBA and BZA that examine the effect of grinding time on reaction outcome

S2- PXRD characterization data for experiments involving benzoic acid (BA)

Fig. S2a- PXRD patterns for competition and selectivity experiments involving BA.

S3- PXRD characterization data for experiments involving *p*-nitrophenol (*p*NP)

Fig. S3a- PXRD patterns for competition and selectivity experiments involving pNP

Fig.S3b- PXRD patterns for competition experiments involving TP•pHBA and pNP that examine the effect of grinding time on reaction outcome

S4- PXRD characterization data for experiments involving hydroquinone (HDQ)

Fig. S4a- PXRD patterns for competition and selectivity experiments involving HDQ.

S5- PXRD characterization data for experiments involving *m*-hydroxybenzoic acid (*m*HBA)

Fig. S5a- PXRD patterns for competition and selectivity experiments involving *m*HBA.

S6- PXRD characterization data for experiments involving *p*-(*N*,*N*-dimethylamino)benzoic acid (dMABA)

Fig.S6b- PXRD patterns for competition experiments involving TP•*p*HBA and dMABA that examine the effect of grinding time on reaction outcome

S7- PXRD characterization data for experiments involving *p*-nitrobenzoic acid (*p*NBA)

Fig. S7a- PXRD patterns for competition and selectivity experiments involving *p*NBA.

*Grinding commercial pNBA results in a mixture of two polymorphs,

S8- PXRD characterization data for experiments involving salicylic acid (SA)

Fig.S8b- PXRD patterns for competition experiments involving TP•*p*HBA and SA that examine the effect of grinding time on reaction outcome

Fig.S8c- DSC heating curves comparing (a) product obtained from solution crystallization of stoichiometric amounts of TP, *p*HBA and SA to (b) a physical mixture of stoichiometric amounts of the three compounds.

S9- PXRD characterization data for experiments involving melamine (MLM)

*Peaks corresponding to pHBA•MLM

Fig. S9c- PXRD patterns from competition and selectivity experiments involving TP.*p*HBA and MLM that examine the effect of solvent used during SDG (solvent = EtOH or DMSO)

Fig.S9d- PXRD patterns for the reverse competition*Peaks correspond to pHBA•MLM

experiment involving TP•MLM and pHBA

*Peaks correspond to pHBA•MLM

Fig.S9f- PXRD patterns for competition experiments involving TP $\cdot p$ HBA and excess MLM that examine the effect of grinding time on reaction outcome

S10- PXRD characterization data for experiments involving acetamide (ACA)

Fig. S10a- PXRD patterns for competition and selectivity experiments involving ACA.

Fig. S10c- PXRD patterns for the reverse competition experiment involving stoichiometric amounts of TP•ACA and pHBA.

Fig.S10d-PXRD patterns for competition and selectivity experiments involving TP•pHBA and excess ACA

S11- PXRD characterization data for experiments involving 3,5-dinitrobenzoic acid (dNBA)

Fig. S11a- PXRD patterns for competition and selectivity experiments involving dNBA.

Fig.S11b- PXRD patterns for competition experiments involving TP•*p*HBA and dNBA that examine the effect of grinding time on reaction outcome

Fig.S11c- DSC heating curves comparing (a) the SDG product of TP + pHBA + dNBA to (b) a physical mixture of stoichiometric amounts of the three compounds.

 $\ensuremath{\textbf{S12-}}\xspace$ PXRD patterns for dMABA before and after grinding showing a phase change

S13- PXRD patterns for pNBA before and after grinding showing a phase change

S14- PXRD patterns for *m*HBA before and after grinding showing a phase change

S16. ¹H NMR spectrum of TP.ACA in DMSO-d₆

S19. ¹H NMR spectrum of TP•MLM in DMSO- d_6

S20. Crystal data and structure refinement for TP•MLM•DMSO.

Empirical formula	C12 H20 N10 O3 S		
Formula weight	384.44		
Temperature	293(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P21/c		
Unit cell dimensions	a = 15.4964(11) Å	α= 90°.	
	b = 8.8674(6) Å	β= 109.4230(10)°.	
	c = 13.2985(9) Å	$\gamma = 90^{\circ}.$	
Volume	1723.4(2) Å ³		
Z	4		
Density (calculated)	1.482 Mg/m ³		
Absorption coefficient	0.227 mm ⁻¹		
F(000)	808		
Crystal size	0.2 x 0.2 x 0.2 mm ³		
Theta range for data collection	2.69 to 28.58°.		
Index ranges	-19<=h<=20, -11<=k<=11, -17<=l<=17		
Reflections collected	19732		
Independent reflections	4187 [R(int) = 0.0293]		
Completeness to theta = 25.00°	100.0 %		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	4187 / 0 / 271		
Goodness-of-fit on F ²	1.044		
Final R indices [I>2sigma(I)]	R1 = 0.0345, wR2 = 0.0852		
R indices (all data)	R1 = 0.0443, wR2 = 0.0913		
Largest diff. peak and hole	0.334 and -0.332 e.Å ⁻³		

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(8)-H(2)O(1)#1	0.881(18)	2.010(19)	2.8781(16)	168.4(16)
N(10)-H(3)O(2)#2	0.878(19)	2.209(19)	3.0495(16)	160.1(17)
N(8)-H(1)N(4)#3	0.87(2)	2.13(2)	2.9887(17)	171.4(16)
N(10)-H(4)O(3)#4	0.89(2)	2.11(2)	2.9893(16)	167.7(17)
N(1)-H(10)N(7)#3	0.94(2)	1.86(2)	2.7995(16)	176.0(19)
N(9)-H(12)O(3)#5	0.86(2)	2.145(19)	2.8145(16)	134.4(17)
N(9)-H(11)N(6)#6	0.91(2)	2.12(2)	3.0317(17)	176.4(18)

S21. Table of hydrogen bonds for TP•MLM•DMSO [Å and °].

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,y-1/2,-z+3/2 #2 x,-y-3/2,z-1/2 #3 -x+1,y+1/2,-z+3/2

#4 -x,y-1/2,-z+1/2 #5 x,-y-1/2,z+1/2 #6 -x,-y-1,-z+1

S22. Crystal structure of TP•MLM•DMSO

