Supporting Information

to the paper entitled

Effect of a methyl group on the spontaneous resolution of a square-pyramidal coordination compound: crystal packing and conglomerate formation

Apurba Biswas,^{*a*} Carolina Estarella,^{*b*} Antonio Frontera,^{*b*} Pablo Ballester,^{*c,d*} Michael G. B. Drew,^{*e*} Patrick Gamez^{*d,f} and Ashutosh Ghosh^{*a}

Table of contents

Table S1. Summary of the crystallographic data for $1 (\Delta \text{ enantiomer})$	S2
Table S2. Coordination bonds (Å) and angles (°) for 1 (Δ enantiomer)	S2
Figure S1. \varDelta enantiomer of [CuL ¹ (pic)] (1)	S 3
Figure S2. UV-Vis spectrum of 1-1 in solution	S 3
Figure S3. Solid-state CD spectrum of the other enantiomer of 1-4	S 3
Figure S4. Solution CD spectrum of 1	S4
Figure S5. Solution CD spectrum of 2	S4
Figure S6. Solid-state and solution UV-Vis spectra of 2	S 5

Formula	$C_{17}H_{21}CuN_3O_3$
Formula weight	378.91
Temperature	100(2) K
Crystal system	orthorhombic
Space group	$P2_{1}2_{1}2_{1}$
a/Å	7.3456(5)
b/Å	11.2047(8)
$c/{ m \AA}$	20.0815(15)
$\alpha / ^{\circ}$	90
$\beta^{\prime \circ}$	90
γ^{\prime}	90
V/Å ³	1652.8(2)
Ζ	4
$D_{\rm calc}/{ m g~cm}^{-3}$	1.523
μ/mm^{-1}	1.342
<i>F</i> (000)	788
<i>R</i> (int)	0.0321
Total Reflections	8722
Flack parameter	0.005(11)
Unique reflections	3607
$I > 2\sigma(I)$	3474
<i>R</i> 1, <i>wR</i> 2	0.0281, 0.0727

Table S1 Summary of the crystallographic data for 1 (Δ enantiomer)

Table S2 Coordination bonds (Å) and angles (°) for $1 (\Delta \text{ enantiomer})$

Cu1-O11	1.909(1)	
Cu1-N19	1.983(2)	
Cu1-O38	1.998(2)	
Cu1-N31	1.982(2)	
Cu1-N22	2.325(2)	
O11-Cu1-N19	95.21(7)	
N19-Cu1-O38	90.53(7)	
O38-Cu1-N31	82.08(7)	
N31-Cu1-O11	93.03(7)	
O11-Cu1-N22	107.50(7)	
N19-Cu1-N22	83.30(8)	
O38-Cu1-N22	98.08(7)	
N31-Cu1-N22	94.08(7)	

Figure S1 Molecular structure of the \varDelta enantiomer of compound 1

Figure S2 UV-Vis spectrum of a millimolar methanolic solution of 1

Figure S3. Solid-state CD spectrum of the other enantiomer of $1-\Delta$

Figure S4 Solution CD spectrum of **1** (1×10^{-3} M in methanol)

Figure S5. Solution CD spectrum of **2** (1×10^{-3} M in methanol)

Figure S6. Solution (A) and solid-state (B) UV-Vis spectra of 2