Supporting Information

Title: Exploring the structural landscape of 2-aminopyrazines via co-crystallizations

Authors: Christer B. Aakeröy,* Prashant D. Chopade, Claudia Ganser, Arbin Rajbanshi and John Desper

Department of chemistry, Kansas State University, Manhattan, KS 66503.

aakeroy@ksu.edu

Table of contents

Table S1	1
Table S2	2
X-ray crystallography	3
Table S3	5
Table S4	7
References	7

Table S1. IR stretch for carbonyl group of acids in all solids resulting from combinations ofacids A1-A30 and B1-B3.

	NAME	B1	B2	B 3
		C=O	C=O	C=O
A1	4-Aminobenzoic acid	-	-	-
A2	4-Hydroxybenzoic acid	1666	1686	-
A3	3,5-Dihydroxybenzoic acid	1706	-	-
A4	2,4-Dimethoxybenzoic acid	1672	-	-
A5	3,4-Dihydroxybenzoic acid	1646	-	-
A6	2,3-Dihydroxybenzoic acid	-	-	-
A7	2,5-Dihydroxybenzoic acid	-	-	1690

A8	2,3-Dimethylbenzoic acid	1646	-	-
A9	2,5-Dimethylbenzoic acid	-	1706	-
A10	Benzoic acid	1672	-	-
A11	4-Nitrobenzoic acid	1695	-	-
A12	4-Fluorobenozoic acid	1646	-	-
A13	Pentafluorobenzoic acid	1679	-	1695
A14	3,5-Dinitrobenzoic acid	1672	1706	1619
A15	2,4-Dinitrobenzoic acid	1664	1716	-
A16	3-Nitrobenzoic acid	1699	1706	1701
A17	2-Chloro-6-fluorobenzoic acid	-	1699	1699
A18	2,6-Difluorobenzoic acid	1712	-	-
A19	3-Fluorobenzoic acid	1653	-	-
A29	4-Cyanobenzoic acid	1654	1700	-
A21	Oxalic acid	1729	1685	1697
A22	Malonic acid	1724	-	-
A23	Succinic acid	1679, 1633	1710	-
A24	Glutaric acid	1697, 1676	1703	-
A25	Adipic acid	1673, 1643	-	-
A26	Pimelic acid	1674, 1633	1717, 1694	-
A27	Suberic acid	1683, 1643	1711	-
A28	Azelaic acid	1673, 1636	-	-
A29	Sebacic acid	1685, 1650	-	-
A30	Dodecanedioic acid	1687, 1645	-	-

Table S2. Results from IR spectroscopy arranged in order of decreasing charge on hydrogen of carboxylic acids. Empty boxes represent 'no reaction' and filled boxes represent a 'reaction'.

Acids	Label	Charge on COO <u>H</u> (kJ/mol) [*]	B1	B2	B3
Malonic acid	A22	177			
3,5-Dinitrobenzoic acid	A14	168			
Oxalic acid	A21	158			
2,3-Dihydroxybenzoic acid	A6	151			

Pentafluorobenzoic acid	A13	148		
4-Nitrobenzoic acid	A11	147		
2,5-Dihydroxybenzoic acid	A7	140		
3-Nitrobenzoic acid	A16	139		
Glutaric acid	A24	139		
Adipic acid	A25	139		
Sebacic acid	A29	138		
2,4-Dinitrobenzoic acid	A15	136		
Succinic acid	A23	136		
Suberic acid	A27	135		
Pimelic acid	A26	134		
Dodecanedioic acid	A30	133		
Azelaic acid	A28	132		
4-Fluorobenozoic acid	A12	128		
3,4-Dihydroxybenzoic acid	A5	124		
3-Fluorobenzoic acid	A19	124		
Benzoic acid	A10	118		
3,5-Dihydroxybenzoic acid	A3	116		
2,5-Dimethylbenzoic acid	A9	115		
2,6-Difluorobenzoic acid	A18	114		
4-Cyanobenzoic acid	A20	113		
2,3-Dimethylbenzoic acid	A8	112		
2-Chloro-6-fluorobenzoic acid	A17	111		
2,4-Dimethoxybenzoic acid	A4	107		
4-Hydroxybenzoic acid	A2	106		
4-Aminobenzoic acid	A1	105		

X-ray crystallography

Data sets were collected on Bruker Kappa APEX II system (B1·A11, B1·A14, B1·A23, B3·A14, B3·A18) or a SMART APEX II system (B1·A16, B1·A24, B1·A26, B1·A27, B1·A29, B3·A13, B3·A7), at 120 K using APEX2 software.^(a) An Oxford Croystream 700 low-temperature device was used to control temperature. MoK α radiation was used. Initial cell constants were found by small widely separated "matrix" runs. Data collection strategies were determined using COSMO.^(b) Scan speeds and scan widths were chosen based on scattering power and peak rocking curves.

Unit cell constants and orientation matrices were improved by least-squares refinement of reflections thresholded from the entire dataset. Integrations were performed with SAINT,^(c) using these improved unit cells as a starting point. Precise unit cell constants were calculated in SAINT from the final merged datasets. Lorenz and polarization corrections were applied. Absorption corrections was applied using SADABS^(d) (**B1.A16**, **B3.A13**, **B3.A14**, **B3.A18**) or TWINABS^(e) (**B1.A14**, **B3.A7**).

Datasets were reduced with SHELXTL.^(f) The structures were solved by direct methods without incident. Unless noted below, coordinates for all carboxylic acid, amine, ammonium, and phenol hydrogens were allowed to refine. All other hydrogens were assigned to idealized positions and were allowed to ride. Isotropic thermal parameters for the hydrogen atoms were constrained to be 1.5x (methyl) / 1.2x (all other) that of the connected atom.

B1•**A11**The carboxylic acid was protonated at both oxygens; hydrogens (H17 & H18) were given idealized coordinates and were assigned half occupancy. The amine was disordered over an inversion center and was assigned half occupancy. Overall stoichiometry was therefore 2 : 1 acid : amine.

B1•**A14**The crystal was a nonmerohedral twin and data were processed with TWINABS.^(e) Proton transfer from carboxylic acid to pyridine nitrogen was observed.

B1·A16The amine was located on an inversion center. The $-NH_2$ group which broke symmetry was assigned half occupancy. Overall stoichiometry was therefore 2 : 1 acid : amine.

B1•**A23** The dicarboxylic acid was located on an inversion center. Overall stoichiometry was therefore 1 : 2 acid : amine.

B1·A24, **B1**·A26, **B1**·A27, **B1**·A29 - The dicarboxylic acid and amine were both located on inversion centers. The $-NH_2$ group which broke symmetry was assigned half occupancy. Overall stoichiometry was therefore 1 : 2 acid : amine.

B3·**A7**- The crystal was a nonmerohedral twin and data were processed with TWINABS.^(e) Coordinates of acid proton H27, phenol proton H22, and amine protons H12A & H12B were allowed to refine. The phenol proton H25 was disordered over two in-plane sites. The two sites (H25A & H25B) were assigned half occupancy and were located in idealized positions.

B3·A13, **B3**·A14, **B3**·A18, The unit cell contained two acid / amine pairs. These pairs were assigned to two residues.

Table S3. Hydrogen-bond Geometries for B3, B1·A11, B1·A14, B1·A16, B1·A23, B1·A24,

Structure	D-H…A	d(D-H)/Å	d(H···A)/Å	d(D···A)/Å	<(DHA)/°
B1·A11 ⁱ	O(17)-H(17)N(21)	0.82	1.95	2.744(6)	163.9
	O(18)-H(18)N(24)#1	0.82	1.89	2.704(5)	171.1
	N(22)-H(22A)O(18)	0.92(6)	2.11(7)	3.006(10)	164(5)
	N(22)-H(22B)O(17)#2	0.92(6)	2.28(6)	3.194(11)	175(6)
B1·A14 ⁱⁱ	N(11)-H(11)O(21)	0.97(4)	1.61(4)	2.573(4)	169(4)
	N(12)-H(12A)O(22)	0.84(5)	1.95(5)	2.790(4)	178(4)
	N(12)-H(12B)O(25)#1	0.92(5)	2.39(4)	3.096(4)	133(3)
	N(12)-H(12B)O(26)#1	0.92(5)	2.29(5)	3.187(5)	166(4)
B1·A16 ⁱⁱⁱ	O(11)-H(11)N(21)	0.965(17)	1.660(17)	2.6174(14)	170.7(14)
	N(22)-H(22A)O(12)	0.86(3)	2.12(3)	2.967(2)	167(3)
	N(22)-H(22B)O(14)#2	0.85(3)	2.22(3)	3.027(2)	158(3)
B1·A23 ^{iv}	O(21)-H(21)N(14)	0.93(4)	1.72(4)	2.643(4)	168(4)
	N(12)-H(12A)N(11)#2	0.85(5)	2.19(5)	3.036(4)	176(4)
	N(12)-H(12B)O(22)#3	0.86(4)	2.17(5)	3.018(4)	168(4)
B1·A24 ^v	N(12)-H(12A)O(22)	0.906(19)	2.261(19)	3.1366(16)	162.3(15)
	N(12)-H(12B)O(26)#1	0.835(19)	2.21(2)	3.0153(15)	161.5(18)
	O(21)-H(21)N(11)	0.91(2)	1.77(2)	2.6792(13)	173.7(19)
	O(25)-H(25)N(14)#2	0.956(19)	1.72(2)	2.6551(13)	166.7(17)
B1·A26 ^{vi}	O(21)-H(21)N(11)	0.947(19)	1.721(19)	2.6588(11)	170.0(17)
	N(12)-H(12A)O(22)	0.925(16)	2.140(16)	3.0459(12)	166.2(13)

	N(12)-H(12B)O(28)#1	0.901(19)	2.10(2)	2.9616(13)	160.9(16)
B1·A27 ^{vii}	O(27)-H(27)N(14)#2 N(12)-H(12A)O(22)	0.98(2) 0.84(4)	1.68(2) 2.06(4)	2.6544(11) 2.883(3)	170(2) 167(3)
	N(12)-H(12B)O(29)#1	0.86(4)	2.13(4)	2.966(3)	164(3)
	N(15)-H(15B)O(22)#2	0.86	2.50	3.289(16)	153.3
	N(15)-H(15A)O(29)#3	0.86	2.13	2.962(14)	162.2
	O(21)-H(21)N(11)	0.95(3)	1.80(3)	2.741(2)	172(3)
	O(28)-H(28)N(14)#4	0.96(4)	1.74(4)	2.689(2)	168(3)
B1A29 ^{viii}	O(21)-H(21)N(11)	0.905(17)	1.809(17)	2.6939(11)	165.2(14)
	N(12)-H(12A)O(22)	0.85(3)	1.97(3)	2.8120(18)	177(3)
	N(12)-H(12B)O(22)#3	0.81(3)	2.05(3)	2.7437(18)	144(3)
B3 · A7 ^{ix}	O(27)-H(27)N(14)	0.80(4)	1.91(4)	2.704(3)	174(4)
	N(13)-H(13A)O(28)	0.88	2.02	2.891(3)	167.9
	N(13)-H(13B)O(22)#1	0.88	2.35	2.944(3)	125.4
	O(22)-H(22)O(28)	0.78(4)	1.87(4)	2.574(3)	149(4)
	O(25)-H(25A)O(25)#2	0.84	1.96	2.762(4)	159.5
$B3 \cdot A13^{x}$	O(21)-H(21)N(11)	0.76(2)	1.84(2)	2.5892(19)	172(3)
	N(12)-H(12A)O(22)	0.86(2)	2.17(2)	3.0174(19)	169(2)
	N(12)-H(12B)O(22)#1	0.82(2)	2.37(2)	3.074(2)	144(2)
B3 ·A14 ^{xi}	O(21)-H(21)N(11)	0.73(2)	1.94(2)	2.6728(17)	176(2)
	N(12)-H(12A)O(25)#1	0.76(2)	2.38(2)	3.031(2)	145(2)
	N(12)-H(12B)O(23)#2	0.88(2)	2.32(2)	3.165(2)	162(2)
B3 · A18 ^{xii}	O(21)-H(21)N(11)	0.81(3)	1.88(3)	2.685(2)	171(2)
	N(12)-H(12A)O(22)	0.81(3)	2.17(3)	2.976(3)	174(2)
	N(12)-H(12B)F(26)#1	0.82(3)	2.68(3)	3.335(2)	138(2)

Symmetry transformations used to generate equivalent atoms:

i) #1 -x+1,-y+1,-z+1 #2 x,-y+3/2,z+1/2 ii) #1 x-1,y,z+1 iii) #1 -x+1,-y,-z+1 #2 x,y-1,z iv) #1 -x+1,-y+1,-z+1 #2 - x+1,-y,-z+1 #3 x-1,-y+1/2,z-1/2 v) #1 -x+2,-y+1,-z+1 #2 -x+1,y-1/2,-z+1/2 vi) #1 -x+2,-y+1,-z+1 #2 -x+1,y+1/2,-z+1/2 vii) #1 -x,y+1/2,-z #2 -x+1,y-1/2,-z+1 #3 x+1,y,z+2 #4 x-1,y,z-2 viii) #1 -x+2,-y+2,-z+2 #2 -x,-y+1,-z #3 - x+1,y-1/2,-z+1 #3 -x+1,y-1/2,-z+1 =x+1,y-1/2,-z+1 =x+1,y-1/2,-z+1,y-1/2,-z+1 =x+1,y-1/2,-z

x+2,-y+2,-z+1 ix) #1 -x+1,-y+1,-z #2 -x+2,-y,-z+1 x) #1 -x+3/2,y-1/2,-z+1/2 xi) #1 -x+2,-y,-z+1 #2 x+1,y+1,z-1 xii) #1 -x+1,-y+2,-z+1

Table S4. The CSD analysis showing binding preference of carboxylic acid when both 2-

aminopyridine and pyridine binding sites are available.

Refcode	2-Aminopyridine end	Pyridine end
COWHOM	СООН	N-H
COWHUS	СООН	I
COWJAA	СООН	I
COMIOO	СООН	NA
OCATUH	homodimer	СООН
PEQPAD	СООН	NH
PEQPEH	СООН	NA
PEQPIL	СООН	ОН
PEQPOR	СООН	NA
PEQPUX	СООН	NA
PEQQAE	СООН	NH
PEQQEI	СООН	СН
PEQQIM	СООН	NA
PEQQOS	СООН	NH

References:

- (a) APEXII v2009. 5-1, © 2009, Bruker Analytical X-ray Systems, Madison, WI.
- (b) COSMO v1. 60, © 1999 2009, Bruker Analytical X-ray Systems, Madison, WI.
- (c) SAINT v7. 60a, © 1997 2008, Bruker Analytical X-ray Systems, Madison, WI.
- (d) SADABS v2008/1, © 2008, , Bruker Analytical X-ray Systems, Madison, WI.
- (e) TWINABS v2008/4, © 2008, , Bruker Analytical X-ray Systems, Madison, WI.
- (f) SHELXTL v2008/4, © 2008, , Bruker Analytical X-ray Systems, Madison, WI.