Supporting Information 1 2 **Controlled Synthesis of Silver Phosphate Crystals with High** 3 Photocatalytic Activity and Bacteriostatic Activity 4 5 6 Jin-Ku Liu^{1,*}, Chong-Xiao Luo¹, Jian-Dong Wang¹, Xiao-Hong Yang², Xin-Hua Zhong¹ 7 ¹Department of Chemistry, Key Laboratory for Advanced Materials of Ministry of Education, East China 8 University of Science and Technology, Shanghai 200237 P.R.China 9 ²Department of Chemistry, Chizhou University, Chizhou, P.R. China 247000, P.R.China 10

Figure S1 showed TEM and SEM images and electron diffraction patterns recorded on pine tree shape, chromosome shape, hex-cross shape, and spinning-top shape of Ag₃PO₄ crystals, respectively. The results demonstrated the controlled growth of vertically aligned Ag₃PO₄ crystals in the [100] orientations. The similar controls have also been achieved over the orientation of Ag₃PO₄ crystals. Furthermore, the structures of Ag₃PO₄ crystals always remained the same cubic phase when Ag₃PO₄ crystals grew under different reagents.

- 18
- 19
- 20

22

Corresponding author; E-mail address: jkliu@ecust.edu.cn

Figure S1. The TEM and ED images of the Ag₃PO₄ crystals synthesized under different addition reagents: (a) no reagent; (b) 1 g/L of Triton-100; (c) 1 g/L of polyglycol-400; (d) 1 g/L of sodium polyacrylate.

29

The approximate absorption spectra in the FT-IR spectra provided an accessorial explanation that the products had the same crystal structure. The corresponding FT-IR spectrum of the products was shown in Figure S2. The spectrum bands at 3435, 2350, 1635, 1390, 1015 and 560 cm⁻¹ were assigned to water v_1 (H-O-H) antisymmetric bending mode, water-phosphate H bonding, v_2 (PO₄³⁻) antisymmetric stretching mode, v_3 (PO₄³⁻) symmetric stretching mode and v_3 (PO₄³⁻) in-phase P-O bend ^[S1] respectively.

37

Figure S2 The FT-IR spectra of the silver phosphate synthesized under different addition
reagents: (a) no reagent; (b) 1 g/L of Triton-100; (c) 1 g/L of polyglycol-400; (d) 1 g/L of
sodium polyacrylate.

Their Raman spectra were shown in Figure S3. Raman scattering was a powerful tools for observing the synthesis of Ag_3PO_4 crystals under different organic addition reagents. The absorption bands at 500 and 720 cm⁻¹ were attributed to P-O bending and stretching vibration. The absorption band within 200-250 cm⁻¹ was the H-O-H stretching broad.

46

47

48

Figure S3 FT-Raman spectra of Ag₃PO₄ crystals synthesized under different addition
reagents: (a) no reagent; (b) 1 g/L of Triton-100; (c) 1 g/L of polyglycol-400; (d) 1 g/L of
sodium polyacrylate.

52

Figure S4 displayed the N₂ adsorption/desorption isotherms of the Ag₃PO₄ crystals under different addition reagents. The Ag₃PO₄ crystals under different addition reagents exhibited the type II adsorption isotherm without prominent rise at $p/p_0 < 0.1$ and with a marginal hysteresis at $p/p_0 > 0.9$. The BET surface area was evaluated to be 1.5, 1.2, 16.6 and 15.6 m²/g for Ag₃PO₄ crystals under the different condition, (a) no reagent; (b) 1 g/L of Triton X-100; (c) 1 g/L of polyglycol-2000; (d) 1 g/L of sodium polyacrylate, respectively ^[S2].

Figure S4 Nitrogen adsorption-desorption isotherms of Ag₃PO₄ crystals under different
addition reagents: (a) no reagent; (b) 1 g/L of Triton X-100; (c) 1 g/L of polyglycol-2000; (d)
1 g/L of sodium polyacrylate.

S1. Qian, G. R.; Xu, X.; Sun, W. M.; Xu, Y. F.; Liu, Q. *Mater. Res. Bull.* 2008, 43: 3463-3473.

67 S2. Toshiaki, T.; Patchanee, C.; Vu, Q. T.; Toshiki, F.; Minoru, T. Appl. Catal. A-Gen. 2012,

437/438: 24-27.