Supporting Information

Polymorphous α - and β -Ni(OH)₂ Complex Architectures: Morphological and Phasal Evolution Mechanism and Enhanced Catalytic Activity as Non-enzymatic Glucose Sensors

Guo-Xiu Tong \Box ,^{*,†,‡} Fang-Ting Liu,[†] Wen-Hua Wu,[†] Jia-Ping Shen,[†] Xian Hu,[†] and Yan Liang,^{*,‡}

[†]College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China

[‡]Croucher Institute for Environmental Sciences and the Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, People's Republic of China

Figure S1. Nitrogen adsorption/desorption isotherm of the β -Ni(OH)₂ samples and their corresponding pore size distribution curves (inset).

As shown in the figure, the flower-like β -Ni(OH)₂ nanostructures showed type IV isotherms with H3 hysteresis loops according to BDDT classification. The β -Ni(OH)₂ samples had a large S_{BET} of 152.77 m²·g⁻¹, pore volume of 1.033 cc·g⁻¹, and average pore size of 4.76 nm. As shown in the insets of Figure S1, the flower-like β -Ni(OH)₂ nanostructures had a bimodal pore-size distribution, containing small mesopores (peak pore ca. 18.6 nm) and large mesopores (peak pore ca. 47.5 nm).