Facile synthesis and characterization of ZnO octahedrons from

solid-state transformation of Zn(II)-organic coordination polymers

Lei Wang^a, Dong Zhao,^a Sheng-Liang Zhong^{*a, b} and An-Wu Xu^{*b}

^a College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China

^b Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China

Fig. S1. XRD pattern of the sample prepared without washing with water and ethanol after solvotheraml reaction.

Fig. S2. FT-IR spectra of (a) NH₂-BDC; (b) H₃BTB; (c) ZNCP-1.

Fig. S3. XPS spectrum of the ZNCP-1.

sample	Reaction	Reaction	$m(Zn(NO_3)_2)$	m(NH ₂ -BDC)	m(H ₃ BTB) (g)	Volume of
	time (h)	Temperature (°C)	(g)	(g)		DMF (mL)
ZNCP-1	12	160	0.1	0.05	0.025	16
ZNCP-2	12	160	0.05	0.05	0.025	16
ZNCP-3	12	160	0.15	0.05	0.025	16
ZNCP-4	12	160	0.1	0	0.025	16
ZNCP-5	12	160	0.1	0.00625	0.025	16
ZNCP-6	12	160	0.1	0.0125	0.025	16
ZNCP-7	12	160	0.1	0.025	0.025	16
ZNCP-8	12	160	0.1	0.05	0	16
ZNCP-9	12	160	0.1	0.05	0.0625	16
ZNCP-10	12	160	0.1	0.05	0.0125	16
ZNCP-11	12	160	0.1	0.05	0.05	16
ZNCP-12	12	80	0.1	0.05	0.025	16
ZNCP-13	12	100	0.1	0.05	0.025	16
ZNCP-14	12	120	0.1	0.05	0.025	16
ZNCP-15	3	160	0.1	0.05	0.025	16
ZNCP-16	6	160	0.1	0.05	0.025	16

TABLE S1: Samples and Corresponding Experimental Parameters

Fig. S4. SEM images of the ZNCP-1prepared at different mass of Zn^{2+} and NH₂-BDC, H₃BTB with other conditions remaining unchanged: (a) 0.05 g (ZNCP-2); (b) 0.15 g (ZNCP-3).

Fig. S5. SEM images of the ZNCP-1 prepared at different mass of NH₂-BDC and Zn^{2+} , H₃BTB with other conditions remaining unchanged: (a) 0 g (ZNCP-4); (b) 0.00625 g (ZNCP-5); (c) 0.0125 g (ZNCP-6); (b) 0.025 g (ZNCP-7).

Fig. S6. SEM images of the ZNCP-1 prepared at different mass of H_3BTB and Zn^{2+} , NH₂-BDC with other conditions remaining unchanged: (a) 0 g (ZNCP-8); (b) 0.00625 g (ZNCP-9); (c) 0.0125 g (ZNCP-10); (b) 0.05 g (ZNCP-11).

Fig. S7. SEM images of the ZNCP-1 at different temperature : (a) 80 $^{\circ}$ C (ZNCP-12); (b) 100 $^{\circ}$ C (ZNCP-13); (c) 120 $^{\circ}$ C (ZNCP-14).

Fig. S8. Nitrogen adsorption-desorption isotherms for the ZnO octahedrons at -196 °C.

Fig. S9. FTIR spectrum of the ZnO octahedrons.

Fig. S10. Raman spectrum of the ZnO octahedrons.

Fig. S11. EDS spectrum of the ZnO octahedrons.