# Electronic Supplementary Material (ESI) for CrystEngComm # This journal is © The Royal Society of Chemistry 2012 data_global _journal_name_full CrystEngComm _journal_coden_cambridge 1350 _journal_year ? _journal_volume ? _journal_page_first ? loop_ _publ_author_name _publ_author_address 'Lingjuan Shen' ; University of Illinois School of Chemical Sciences 600 South Mathews Avenue Urbana, Illinois 61801 USA ; 'Danielle Gray' ; University of Illinois School of Chemical Sciences, Box 59-1 505 South Mathews Avenue Urbana, Illinois 61801 USA ; _publ_contact_author ; Gregory S. Girolami University of Illinois School of Chemical Sciences 600 South Mathews Avenue Urbana, Illinois 61801 USA ; _publ_contact_author_email ggirolami@illinois.edu _publ_contact_author_fax '1 217 244 3186' _publ_contact_author_phone '1 217 333 2729' _publ_contact_letter ; Please consider this CIF submission for publication as a structural paper in CrystEngComm. ; _publ_requested_category FM _publ_requested_coeditor_name ? _publ_section_title ; Synthesis and Characterization of Zinc Metal-Organic Frameworks with Chiral Nano-Pores ; data_92asq _database_code_depnum_ccdc_archive 'CCDC 883547' #TrackingRef '- 92asq.cif' _audit_creation_method SHELXL-97 _audit_update_record ; ? ; _chemical_name_systematic ; ? ; _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety ; C26 H14 N4 O12 Zn3, 2(C5 H11 N O) ; _chemical_formula_sum 'C36 H36 N6 O14 Zn3' _chemical_formula_structural ? _chemical_formula_weight 972.82 _chemical_absolute_configuration rmad _chemical_formula_iupac ? _chemical_formula_analytical ? _chemical_compound_source ? loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source C C 0.0181 0.0091 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' H H 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' N N 0.0311 0.0180 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' O O 0.0492 0.0322 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' Zn Zn -1.5491 0.6778 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting Tetragonal _symmetry_space_group_name_H-M 'P4(1)2(1)2 ' _symmetry_space_group_name_Hall 'P 4abw 2nw ' loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, z+1/2' '-y+1/2, x+1/2, z+1/4' 'y+1/2, -x+1/2, z+3/4' '-x+1/2, y+1/2, -z+1/4' 'x+1/2, -y+1/2, -z+3/4' 'y, x, -z' '-y, -x, -z+1/2' _cell_length_a 15.1751(3) _cell_length_b 15.1751(3) _cell_length_c 22.5604(8) _cell_angle_alpha 90.00 _cell_angle_beta 90.00 _cell_angle_gamma 90.00 _cell_volume 5195.3(2) _cell_formula_units_Z 4 _cell_measurement_temperature 100(2) _cell_measurement_reflns_used 9884 _cell_measurement_theta_min 4.89 _cell_measurement_theta_max 67.74 _exptl_crystal_description prism _exptl_crystal_colour colourless _exptl_crystal_size_max 0.164 _exptl_crystal_size_mid 0.072 _exptl_crystal_size_min 0.07 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.244 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 1984 _exptl_crystal_id 92asq _exptl_crystal_preparation ; The data crystal was mounted using oil (Parantone-N, Exxon) to a glass fiber. ; _exptl_absorpt_coefficient_mu 2.111 _exptl_absorpt_correction_type integration _exptl_absorpt_correction_T_min 0.8488 _exptl_absorpt_correction_T_max 0.9322 _exptl_absorpt_process_details 'SHELXTL/XPREP V2005/2 (Bruker, 2005)' _exptl_special_details ; One distinct cell was identified using APEX2 (Bruker, 2010). Twenty frame series were integrated and filtered for statistical outliers using SAINT (Bruker, 2005) then corrected for absorption by integration using SHELXTL/XPREP V2005/2 (Bruker, 2005) before using SADABS (Bruker, 2005) to sort, merge, and scale the combined data. The absorption correction was done prior to the squeeze process unsing the mu that contained the contribution from 2 DEF per formula unit. No decay correction was applied. The final refinements excluded the 0 2 3 and 0 1 3 reflections. ; _diffrn_ambient_temperature 100(2) _diffrn_radiation_wavelength 1.54178 _diffrn_radiation_wavelength_id 92asq _diffrn_radiation_type CuK\a _diffrn_radiation_source 'Imus microfocus sealed tube' _diffrn_radiation_monochromator 'Mx optics' _diffrn_measurement_device_type ? _diffrn_measurement_device 'Bruker prospector/ApexII CCD' _diffrn_measurement_method 'profile data from \f and \w scans' _diffrn_detector_area_resol_mean ? _diffrn_reflns_number 57131 _diffrn_reflns_av_R_equivalents 0.0466 _diffrn_reflns_av_sigmaI/netI 0.0191 _diffrn_reflns_limit_h_min -18 _diffrn_reflns_limit_h_max 14 _diffrn_reflns_limit_k_min -17 _diffrn_reflns_limit_k_max 18 _diffrn_reflns_limit_l_min -26 _diffrn_reflns_limit_l_max 27 _diffrn_reflns_theta_min 4.12 _diffrn_reflns_theta_max 67.73 _reflns_number_total 4672 _reflns_number_gt 4593 _reflns_threshold_expression >2sigma(I) _computing_data_collection 'APEX2 V2010.11-3 (Bruker, 2010)' _computing_cell_refinement 'SAINT V7.68A (Bruker, 2005)' _computing_data_reduction ; SAINT V7.68A, XPREP V2005/2, SADABS V2007/4, TWINABS V2007/5 (Bruker, 2005 & 2007) ; _computing_structure_solution 'SHELXTL V6.12 (Bruker, 2005)' _computing_structure_refinement 'SHELXTL V6.12 (Bruker, 2005)' _computing_molecular_graphics ; SHELXTL V6.12 (Bruker, 2005), CrystalMaker v2.1.3 (CrystalMaker, 1994) ; _computing_publication_material 'XCIF V6.12 (Bruker, 2005)' _refine_special_details ; Structure was phased by direct methods (Sheldrick, 2008). Systematic conditions suggested the ambiguous space group. The space group choice is either of the enantiomorphic space groups P4(1)2(1)2 or P4(3)2(1)2. The racemic mixture is almost 50/50. The space group P4(1)2(1)2 was chosen over the other space group because the refined portion of this enantiomer was slightly greater. The highest peaks in the final difference Fourier map were in the vicinity of atom Zn2; the final map had no other significant features. A final analysis of variance between observed and calculated structure factors showed little dependence on amplitude and some dependence on resolution. ; _refine_ls_structure_factor_coef Fsqd _refine_ls_matrix_type full _refine_ls_weighting_scheme calc _refine_ls_weighting_details 'calc w=1/[\s^2^(Fo^2^)+(0.0754P)^2^+3.7584P] where P=(Fo^2^+2Fc^2^)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom _refine_ls_hydrogen_treatment noref _refine_ls_extinction_method none _refine_ls_extinction_coef ? _refine_ls_abs_structure_details 'Flack (1983), 1955 Friedels' _refine_ls_abs_structure_Flack 0.50(4) _refine_ls_number_reflns 4672 _refine_ls_number_parameters 324 _refine_ls_number_restraints 503 _refine_ls_R_factor_all 0.0427 _refine_ls_R_factor_gt 0.0422 _refine_ls_wR_factor_ref 0.1178 _refine_ls_wR_factor_gt 0.1174 _refine_ls_goodness_of_fit_ref 1.099 _refine_ls_restrained_S_all 1.069 _refine_ls_shift/su_max 0.000 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_y _atom_site_fract_z _atom_site_U_iso_or_equiv _atom_site_adp_type _atom_site_occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly _atom_site_disorder_group Zn1 Zn 0.24247(3) 0.33321(3) 0.143905(16) 0.03091(14) Uani 1 1 d D . . Zn2 Zn 0.27872(3) 0.27872(3) 0.0000 0.02885(16) Uani 1 2 d S . . O1 O 0.2260(2) 0.64599(17) 0.26773(11) 0.0501(7) Uani 1 1 d . . . O2 O 0.16620(19) 0.62191(17) 0.35748(10) 0.0437(6) Uani 1 1 d . . . O3 O 0.201(3) -0.0997(16) 0.2253(16) 0.054(4) Uani 0.34(8) 1 d PDU A 1 O3B O 0.2218(17) -0.0850(11) 0.2355(6) 0.047(3) Uani 0.66(8) 1 d PDU A 2 O4 O 0.21962(19) -0.04587(15) 0.13772(10) 0.0409(6) Uani 1 1 d . . . O5 O 0.31348(16) 0.25493(18) 0.08823(10) 0.0416(6) Uani 1 1 d . . . N1 N 0.2143(11) 0.3827(5) 0.2288(3) 0.0386(14) Uani 0.598(17) 1 d PDU A 1 N2 N 0.2131(15) 0.2152(4) 0.1950(4) 0.0406(14) Uani 0.598(17) 1 d PDU A 1 C1 C 0.2173(13) 0.4665(5) 0.2416(5) 0.0390(16) Uani 0.598(17) 1 d PDU A 1 H1A H 0.2409 0.5059 0.2129 0.047 Uiso 0.598(17) 1 calc PR A 1 C2 C 0.1877(12) 0.5011(6) 0.2948(5) 0.043(2) Uani 0.598(17) 1 d PDU A 1 C3 C 0.1541(8) 0.4423(6) 0.3355(4) 0.0483(19) Uani 0.598(17) 1 d PDU A 1 H3A H 0.1328 0.4634 0.3725 0.058 Uiso 0.598(17) 1 calc PR A 1 C4 C 0.1508(9) 0.3530(6) 0.3232(4) 0.0518(19) Uani 0.598(17) 1 d PDU A 1 H4A H 0.1290 0.3121 0.3515 0.062 Uiso 0.598(17) 1 calc PR A 1 C5 C 0.1805(8) 0.3250(5) 0.2681(3) 0.0439(17) Uani 0.598(17) 1 d PDU A 1 C6 C 0.1804(7) 0.2314(5) 0.2510(4) 0.0428(16) Uani 0.598(17) 1 d PDU A 1 C7 C 0.1564(8) 0.1631(5) 0.2875(4) 0.0517(19) Uani 0.598(17) 1 d PDU A 1 H7A H 0.1355 0.1754 0.3263 0.062 Uiso 0.598(17) 1 calc PR A 1 C8 C 0.1622(8) 0.0777(5) 0.2687(4) 0.0497(19) Uani 0.598(17) 1 d PDU A 1 H8A H 0.1457 0.0307 0.2942 0.060 Uiso 0.598(17) 1 calc PR A 1 C9 C 0.1926(9) 0.0604(5) 0.2117(4) 0.044(2) Uani 0.598(17) 1 d PDU A 1 C10 C 0.217(2) 0.1319(5) 0.1766(5) 0.0393(16) Uani 0.598(17) 1 d PDU A 1 H10A H 0.2373 0.1207 0.1375 0.047 Uiso 0.598(17) 1 calc PR A 1 N1B N 0.2124(16) 0.3864(7) 0.2280(4) 0.0415(19) Uani 0.402(17) 1 d PDU A 2 N2B N 0.212(2) 0.2173(6) 0.1954(5) 0.0413(19) Uani 0.402(17) 1 d PDU A 2 C1B C 0.2134(19) 0.4705(7) 0.2401(7) 0.039(2) Uani 0.402(17) 1 d PDU A 2 H1B H 0.2233 0.5109 0.2086 0.047 Uiso 0.402(17) 1 calc PR A 2 C2B C 0.2006(19) 0.5036(8) 0.2967(7) 0.044(2) Uani 0.402(17) 1 d PDU A 2 C3B C 0.1874(12) 0.4433(8) 0.3415(5) 0.046(2) Uani 0.402(17) 1 d PDU A 2 H3B H 0.1784 0.4634 0.3809 0.056 Uiso 0.402(17) 1 calc PR A 2 C4B C 0.1870(12) 0.3536(8) 0.3297(4) 0.046(2) Uani 0.402(17) 1 d PDU A 2 H4B H 0.1769 0.3118 0.3602 0.056 Uiso 0.402(17) 1 calc PR A 2 C5B C 0.2019(12) 0.3271(7) 0.2716(5) 0.0461(19) Uani 0.402(17) 1 d PDU A 2 C6B C 0.2039(11) 0.2332(7) 0.2552(5) 0.0463(19) Uani 0.402(17) 1 d PDU A 2 C7B C 0.1917(12) 0.1648(8) 0.2943(5) 0.050(2) Uani 0.402(17) 1 d PDU A 2 H7B H 0.1790 0.1769 0.3347 0.060 Uiso 0.402(17) 1 calc PR A 2 C8B C 0.1977(12) 0.0795(8) 0.2754(6) 0.049(2) Uani 0.402(17) 1 d PDU A 2 H8B H 0.1935 0.0323 0.3030 0.059 Uiso 0.402(17) 1 calc PR A 2 C9B C 0.2100(15) 0.0624(8) 0.2155(7) 0.047(2) Uani 0.402(17) 1 d PDU A 2 C10B C 0.213(4) 0.1339(7) 0.1769(8) 0.040(2) Uani 0.402(17) 1 d PDU A 2 H10B H 0.2166 0.1228 0.1355 0.048 Uiso 0.402(17) 1 calc PR A 2 C11 C 0.1953(3) 0.5987(2) 0.30724(15) 0.0406(8) Uani 1 1 d . . . C12 C 0.2118(3) -0.0327(2) 0.19220(16) 0.0462(9) Uani 1 1 d D . . O6 O 0.4067(3) 0.2820(4) 0.16047(18) 0.1053(16) Uani 1 1 d . A . C13 C 0.3880(3) 0.2443(5) 0.1127(2) 0.0768(16) Uani 1 1 d . . . H13A H 0.4304 0.2071 0.0944 0.092 Uiso 1 1 calc R A . loop_ _atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 _atom_site_aniso_U_12 Zn1 0.0426(3) 0.0348(2) 0.0154(2) -0.00163(15) 0.00089(16) -0.00391(18) Zn2 0.0344(2) 0.0344(2) 0.0177(3) -0.00108(15) 0.00108(15) -0.0006(2) O1 0.079(2) 0.0390(13) 0.0320(13) -0.0027(10) 0.0087(13) -0.0024(13) O2 0.0638(16) 0.0444(13) 0.0228(11) -0.0073(10) 0.0024(12) 0.0037(13) O3 0.113(12) 0.034(6) 0.015(6) -0.010(6) -0.007(6) -0.002(6) O3B 0.108(8) 0.023(4) 0.010(3) -0.007(3) -0.006(3) 0.003(4) O4 0.0630(16) 0.0367(12) 0.0228(11) 0.0025(9) 0.0054(11) 0.0113(12) O5 0.0393(12) 0.0631(16) 0.0224(10) 0.0014(11) 0.0002(9) 0.0063(11) N1 0.056(3) 0.040(2) 0.020(2) 0.001(2) -0.001(2) 0.003(3) N2 0.056(3) 0.043(3) 0.023(2) 0.003(2) 0.001(3) 0.002(3) C1 0.055(3) 0.038(3) 0.024(3) -0.001(3) 0.001(3) 0.000(3) C2 0.061(5) 0.042(3) 0.027(3) -0.004(2) 0.005(3) 0.003(3) C3 0.069(5) 0.043(3) 0.033(3) -0.001(2) 0.019(3) 0.001(3) C4 0.078(5) 0.045(3) 0.033(3) -0.002(2) 0.015(3) 0.000(4) C5 0.065(4) 0.041(2) 0.026(2) 0.003(2) 0.003(3) 0.001(3) C6 0.060(4) 0.041(2) 0.027(2) -0.002(2) 0.006(3) 0.004(3) C7 0.077(5) 0.045(3) 0.033(3) -0.002(2) 0.011(3) 0.006(3) C8 0.072(5) 0.043(3) 0.034(3) 0.005(2) 0.010(4) 0.002(3) C9 0.061(5) 0.044(3) 0.026(3) 0.005(2) 0.005(3) 0.007(3) C10 0.057(4) 0.041(3) 0.020(3) 0.000(2) 0.003(3) 0.010(3) N1B 0.059(4) 0.043(3) 0.021(3) 0.003(3) 0.000(4) -0.001(4) N2B 0.056(4) 0.044(3) 0.024(3) 0.002(3) 0.003(4) 0.002(4) C1B 0.054(4) 0.039(3) 0.024(3) 0.002(3) -0.001(4) 0.004(4) C2B 0.063(5) 0.041(3) 0.028(3) -0.001(3) 0.005(4) 0.003(4) C3B 0.071(5) 0.040(3) 0.028(3) 0.000(3) 0.004(4) 0.004(4) C4B 0.073(5) 0.040(3) 0.026(3) 0.002(3) 0.005(4) -0.001(4) C5B 0.069(4) 0.043(3) 0.026(3) 0.004(3) 0.004(3) 0.005(3) C6B 0.070(4) 0.045(3) 0.024(3) 0.000(3) 0.002(3) 0.005(3) C7B 0.074(5) 0.048(3) 0.028(3) 0.000(3) 0.002(4) 0.005(4) C8B 0.074(5) 0.043(3) 0.030(3) 0.006(3) 0.001(4) 0.009(4) C9B 0.067(5) 0.046(3) 0.028(3) 0.005(3) 0.005(4) 0.010(4) C10B 0.056(4) 0.042(3) 0.022(3) 0.002(3) 0.004(4) 0.008(4) C11 0.056(2) 0.0404(19) 0.0251(16) -0.0044(14) 0.0029(15) -0.0012(16) C12 0.072(3) 0.0342(18) 0.0325(19) 0.0038(15) 0.0085(18) 0.0083(18) O6 0.101(3) 0.156(5) 0.058(2) -0.001(3) -0.033(2) -0.014(3) C13 0.061(3) 0.118(5) 0.051(3) 0.000(3) -0.015(2) 0.023(3) _geom_special_details ; All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ; loop_ _geom_bond_atom_site_label_1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Zn1 O2 2.006(2) 4_454 ? Zn1 O5 2.037(2) . ? Zn1 O4 2.051(2) 5 ? Zn1 N1 2.101(5) . ? Zn1 N1B 2.111(6) . ? Zn1 N2B 2.158(6) . ? Zn1 N2 2.176(5) . ? Zn2 O3 1.951(16) 5 ? Zn2 O3 1.951(16) 4_554 ? Zn2 O1 2.055(3) 5_545 ? Zn2 O1 2.055(3) 4_454 ? Zn2 O5 2.091(2) 7 ? Zn2 O5 2.091(2) . ? Zn2 O3B 2.093(15) 5 ? Zn2 O3B 2.093(15) 4_554 ? O1 C11 1.236(5) . ? O1 Zn2 2.055(3) 3 ? O2 C11 1.266(4) . ? O2 Zn1 2.006(2) 3 ? O3 C12 1.271(8) . ? O3 Zn2 1.951(16) 3_545 ? O3B C12 1.268(6) . ? O3B Zn2 2.093(15) 3_545 ? O4 C12 1.251(4) . ? O4 Zn1 2.051(2) 5_545 ? O5 C13 1.269(5) . ? N1 C1 1.305(6) . ? N1 C5 1.347(7) . ? N2 C10 1.331(6) . ? N2 C6 1.379(7) . ? C1 C2 1.385(7) . ? C1 H1A 0.9500 . ? C2 C3 1.377(7) . ? C2 C11 1.512(9) . ? C3 C4 1.385(8) . ? C3 H3A 0.9500 . ? C4 C5 1.388(7) . ? C4 H4A 0.9500 . ? C5 C6 1.473(7) . ? C6 C7 1.372(7) . ? C7 C8 1.367(8) . ? C7 H7A 0.9500 . ? C8 C9 1.390(7) . ? C8 H8A 0.9500 . ? C9 C10 1.393(9) . ? C9 C12 1.508(9) . ? C10 H10A 0.9500 . ? N1B C1B 1.304(7) . ? N1B C5B 1.344(8) . ? N2B C10B 1.333(7) . ? N2B C6B 1.376(8) . ? C1B C2B 1.386(8) . ? C1B H1B 0.9500 . ? C2B C3B 1.378(9) . ? C2B C11 1.464(13) . ? C3B C4B 1.386(9) . ? C3B H3B 0.9500 . ? C4B C5B 1.388(8) . ? C4B H4B 0.9500 . ? C5B C6B 1.473(8) . ? C6B C7B 1.373(8) . ? C7B C8B 1.366(9) . ? C7B H7B 0.9500 . ? C8B C9B 1.389(8) . ? C8B H8B 0.9500 . ? C9B C10B 1.392(10) . ? C9B C12 1.536(13) . ? C10B H10B 0.9500 . ? O6 C13 1.253(7) . ? C13 H13A 0.9500 . ? loop_ _geom_angle_atom_site_label_1 _geom_angle_atom_site_label_2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag O2 Zn1 O5 103.45(10) 4_454 . ? O2 Zn1 O4 96.27(12) 4_454 5 ? O5 Zn1 O4 99.14(11) . 5 ? O2 Zn1 N1 100.7(5) 4_454 . ? O5 Zn1 N1 151.4(4) . . ? O4 Zn1 N1 93.1(2) 5 . ? O2 Zn1 N1B 99.7(7) 4_454 . ? O5 Zn1 N1B 153.0(6) . . ? O4 Zn1 N1B 91.8(3) 5 . ? N1 Zn1 N1B 1.8(8) . . ? O2 Zn1 N2B 91.6(9) 4_454 . ? O5 Zn1 N2B 88.3(5) . . ? O4 Zn1 N2B 167.6(5) 5 . ? N1 Zn1 N2B 75.9(4) . . ? N1B Zn1 N2B 77.4(4) . . ? O2 Zn1 N2 91.9(6) 4_454 . ? O5 Zn1 N2 87.4(3) . . ? O4 Zn1 N2 168.0(4) 5 . ? N1 Zn1 N2 76.7(2) . . ? N1B Zn1 N2 78.2(4) . . ? N2B Zn1 N2 0.9(9) . . ? O3 Zn2 O3 78(2) 5 4_554 ? O3 Zn2 O1 171.2(14) 5 5_545 ? O3 Zn2 O1 97.4(12) 4_554 5_545 ? O3 Zn2 O1 97.4(12) 5 4_454 ? O3 Zn2 O1 171.2(14) 4_554 4_454 ? O1 Zn2 O1 88.25(18) 5_545 4_454 ? O3 Zn2 O5 93.4(13) 5 7 ? O3 Zn2 O5 81.5(13) 4_554 7 ? O1 Zn2 O5 93.21(10) 5_545 7 ? O1 Zn2 O5 91.42(10) 4_454 7 ? O3 Zn2 O5 81.5(13) 5 . ? O3 Zn2 O5 93.4(13) 4_554 . ? O1 Zn2 O5 91.42(10) 5_545 . ? O1 Zn2 O5 93.21(10) 4_454 . ? O5 Zn2 O5 173.54(15) 7 . ? O3 Zn2 O3B 12.0(10) 5 5 ? O3 Zn2 O3B 84.0(13) 4_554 5 ? O1 Zn2 O3B 176.8(7) 5_545 5 ? O1 Zn2 O3B 90.0(7) 4_454 5 ? O5 Zn2 O3B 84.2(5) 7 5 ? O5 Zn2 O3B 91.3(5) . 5 ? O3 Zn2 O3B 84.0(13) 5 4_554 ? O3 Zn2 O3B 12.0(10) 4_554 4_554 ? O1 Zn2 O3B 90.0(7) 5_545 4_554 ? O1 Zn2 O3B 176.8(7) 4_454 4_554 ? O5 Zn2 O3B 91.3(5) 7 4_554 ? O5 Zn2 O3B 84.2(5) . 4_554 ? O3B Zn2 O3B 91.8(14) 5 4_554 ? C11 O1 Zn2 134.2(2) . 3 ? C11 O2 Zn1 128.2(2) . 3 ? C12 O3 Zn2 155(3) . 3_545 ? C12 O3B Zn2 137.6(15) . 3_545 ? C12 O4 Zn1 120.7(2) . 5_545 ? C13 O5 Zn1 106.1(3) . . ? C13 O5 Zn2 131.4(3) . . ? Zn1 O5 Zn2 110.67(11) . . ? C1 N1 C5 120.1(5) . . ? C1 N1 Zn1 122.9(5) . . ? C5 N1 Zn1 116.4(4) . . ? C10 N2 C6 118.0(6) . . ? C10 N2 Zn1 127.4(5) . . ? C6 N2 Zn1 114.3(4) . . ? N1 C1 C2 123.3(6) . . ? N1 C1 H1A 118.3 . . ? C2 C1 H1A 118.3 . . ? C3 C2 C1 116.9(6) . . ? C3 C2 C11 122.6(6) . . ? C1 C2 C11 120.4(7) . . ? C2 C3 C4 120.9(6) . . ? C2 C3 H3A 119.6 . . ? C4 C3 H3A 119.6 . . ? C3 C4 C5 117.9(6) . . ? C3 C4 H4A 121.1 . . ? C5 C4 H4A 121.1 . . ? N1 C5 C4 120.9(5) . . ? N1 C5 C6 117.1(5) . . ? C4 C5 C6 121.9(6) . . ? C7 C6 N2 120.7(5) . . ? C7 C6 C5 124.8(6) . . ? N2 C6 C5 114.3(5) . . ? C8 C7 C6 120.8(6) . . ? C8 C7 H7A 119.6 . . ? C6 C7 H7A 119.6 . . ? C7 C8 C9 119.1(6) . . ? C7 C8 H8A 120.4 . . ? C9 C8 H8A 120.4 . . ? C8 C9 C10 117.8(6) . . ? C8 C9 C12 120.7(6) . . ? C10 C9 C12 120.8(8) . . ? N2 C10 C9 123.4(7) . . ? N2 C10 H10A 118.3 . . ? C9 C10 H10A 118.3 . . ? C1B N1B C5B 120.2(7) . . ? C1B N1B Zn1 124.1(7) . . ? C5B N1B Zn1 115.3(6) . . ? C10B N2B C6B 118.4(7) . . ? C10B N2B Zn1 127.0(7) . . ? C6B N2B Zn1 113.8(6) . . ? N1B C1B C2B 123.1(8) . . ? N1B C1B H1B 118.4 . . ? C2B C1B H1B 118.4 . . ? C3B C2B C1B 117.0(8) . . ? C3B C2B C11 121.8(9) . . ? C1B C2B C11 121.0(10) . . ? C2B C3B C4B 120.8(8) . . ? C2B C3B H3B 119.6 . . ? C4B C3B H3B 119.6 . . ? C3B C4B C5B 117.7(8) . . ? C3B C4B H4B 121.1 . . ? C5B C4B H4B 121.1 . . ? N1B C5B C4B 121.1(7) . . ? N1B C5B C6B 117.5(7) . . ? C4B C5B C6B 121.4(7) . . ? C7B C6B N2B 120.6(7) . . ? C7B C6B C5B 124.6(8) . . ? N2B C6B C5B 114.7(7) . . ? C8B C7B C6B 120.5(8) . . ? C8B C7B H7B 119.8 . . ? C6B C7B H7B 119.8 . . ? C7B C8B C9B 119.3(8) . . ? C7B C8B H8B 120.3 . . ? C9B C8B H8B 120.3 . . ? C8B C9B C10B 117.9(8) . . ? C8B C9B C12 120.7(9) . . ? C10B C9B C12 121.2(9) . . ? N2B C10B C9B 122.9(10) . . ? N2B C10B H10B 118.5 . . ? C9B C10B H10B 118.5 . . ? O1 C11 O2 128.0(3) . . ? O1 C11 C2B 115.7(6) . . ? O2 C11 C2B 116.0(6) . . ? O1 C11 C2 117.7(5) . . ? O2 C11 C2 114.3(5) . . ? O4 C12 O3B 130.2(9) . . ? O4 C12 O3 117.5(19) . . ? O4 C12 C9 117.0(5) . . ? O3B C12 C9 112.6(9) . . ? O3 C12 C9 123.6(18) . . ? O4 C12 C9B 119.2(6) . . ? O3B C12 C9B 109.1(11) . . ? O3 C12 C9B 123.2(19) . . ? O6 C13 O5 121.2(5) . . ? O6 C13 H13A 119.4 . . ? O5 C13 H13A 119.4 . . ? _diffrn_measured_fraction_theta_max 0.994 _diffrn_reflns_theta_full 67.73 _diffrn_measured_fraction_theta_full 0.994 _diffrn_standards_number ? _diffrn_standards_decay_% ? _diffrn_standards_interval_time ? _refine_diff_density_max 1.109 _refine_diff_density_min -0.400 _refine_diff_density_rms 0.082 _publ_section_references ; Bruker (2010). APEX2. Bruker AXS, Inc., Madison, Wisconsin, USA. Bruker (2005). SAINT, SHELXTL, XCIF, XPREP. Bruker AXS, Inc., Madison, Wisconsin, USA. Bruker (2007). SADABS, TWINABS. Bruker AXS, Inc., Madison, Wisconsin, USA. CrystalMaker (1994). CrystalMaker, a crystal and molecular structures program for Mac and Windows. CrystalMaker Software Ltd., Oxford, England (www.crystalmaker.com). Flack, H. D. (1983), Acta Cryst. A39, 876-881. Flack, H. D. (2000), J. Appl. Cryst., 33, 1143-1148. Spek, A. L. and van der Sluis, P. (1990). Acta Cryst. A46, 194-201. Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122 ; _publ_section_figure_captions ; Figure 1. SHELXTL (Bruker, 2005) plot showing 35% probability ellipsoids for non-H atoms and circles of arbitrary size for H atoms. ; _publ_section_exptl_prep ; Crystals were grown from a hot diethylformamide solution with formic acid. ; _publ_section_exptl_refinement ; A metal organinc framework consisting of 3 Zn, 2 deprotinated formic acid molecules, and 2 -OOC(C10H6N2)COO- molecules was developed with solvent cavities that contained highly disordered diethylformamide molecules.This model converged with wR2 = 0.2197 and R1 = 0.0696 for 323 parameters with 503 restraints against 4672 data. Since positions for the solvate molecules could not be determined a second structural model was refined with contributions from the solvate molecules removed from the diffraction data using the bypass procedure in PLATON (Spek, 1990). No positions for the host network differed by more than two su's between these two refined models. The electron count from the "squeeze" model converged in good agreement with two DEF solvate molecules predicted by the complete refinement. The "squeeze" data are reported here. The the central portion of the -OOC(C10H6N2)COO- was disordered over two sites. Zn-N distances in the disordered ligand were restrained to be similar (esd 0.01). The bond sdistances and angles within the disordered molecules were restrained to be the same (esd 0.01) and the central portion of the molecule was also restrained to be flat (esd 0.01 for all). The O3 atom was also split over 2 sites. The like C-O distances for this atom were restrained to be similar (esd 0.01). Rigid-bond restraints (esd 0.01) were imposed on displacement parameters for all disordered sites and similar displacement amplitudes (esd 0.01) were imposed on disordered sites overlapping by less than the sum of van der Waals radii. C13 and O6 of the bound formic acid have large displacement parameters. This is because O6 is not bound to the framework and the molecule can freely pivot about the O5-C13 axis in the solvent cavity. H atom treatment - H atoms were included as riding idealized contributors and their U's were assigned as 1.2 times carrier U~eq~. On the basis of 1955 unmerged Friedel opposites, the fractional contribution of the racemic twin is close to 50% (Flack, 1983 & 2000). The fractional contribution was checked before the "squeeze" process and the P4(1)2(1)2 component is slightly larger than the P4(3)2(1)2 component by about 1%. After the "squeeze" process the ratio is 0.50(4). ; _publ_section_abstract ; ? ; _publ_section_comment ; ? ; _publ_section_acknowledgements ; The IMSERC at Northwestern University kindly collected the single crystal X-ray data. ; _platon_squeeze_details ; The solvent accessible voids contain diethylformamide (DEF), water or formic acid. For the sake of the absorption coefficient, it was assumed that the voids contain only DEF. One DEF has 56 electrons, which is equivalent to approximately 8.5 DEF/void. Z=4 so the amount of DEF/assymetric unit is approximately 2.1 DEF. The amount of DEF reported in the moiety, calculated into the molecular weight, the density and the absorption coefficient was 2 molecules of DEF. ; loop_ _platon_squeeze_void_nr _platon_squeeze_void_average_x _platon_squeeze_void_average_y _platon_squeeze_void_average_z _platon_squeeze_void_volume _platon_squeeze_void_count_electrons _platon_squeeze_void_content 1 -0.121 -0.113 0.003 2783 479 ' ' loop_ _exptl_crystal_face_index_h _exptl_crystal_face_index_k _exptl_crystal_face_index_l _exptl_crystal_face_perp_dist 0.00 -1.00 -1.00 0.0180 0.00 0.00 1.00 0.0100 1.00 0.00 -1.00 0.0070 0.00 1.00 -1.00 0.0350 1.00 -1.00 -1.00 0.0180 -1.00 0.00 1.00 0.0690 -1.00 0.00 -1.00 0.0670 _vrf_CHEMW03_I ; PROBLEM: ALERT: The ratio of given/expected molecular weight as RESPONSE: Two DEF molecules per formula unit were included in the molecular weight even though their contributions were "squeezed" from the final refinements. This was done to more accurately portray the true molecular weight of the crystal. ; _vrf_PLAT043_I ; PROBLEM: Check Reported Molecular Weight ................ 972.82 RESPONSE: Two DEF molecules per formula unit were included in the molecular weight even though their contributions were "squeezed" from the final refinements. This was done to more accurately portray the true molecular weight of the crystal. ; _vrf_PLAT044_I ; PROBLEM: Calculated and Reported Dx Differ .............. ? RESPONSE: Two DEF molecules per formula unit were included in the molecular weight even though their contributions were "squeezed" from the final refinements. This causes the calculated densities to differ, but the calculated density more accurately portrays the true density of the crystal. ; _vrf_PLAT241_I ; PROBLEM: Check High Ueq as Compared to Neighbors for O6 RESPONSE: C13 and O6 of the bound formic acid have large displacement parameters. This is because O6 is not bound to the framework and the molecule can freely pivot about the O5-C13 axis in the solvent cavity. ;