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Luminescence Properties 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1. The emission spectra of 1, red line, and 5-BrNic, blue line, in solid state at room temperature. 
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Crystal Data 
 

Crystal Data. 1: [Cd(C12H6N2O4Br2)], M = 514.41, monoclinic, space group P21/n, a = 11.2814(12), 

b = 9.9474(11), c = 13.2863(15) Å,  = 108.7840(10), V = 1411.6(3) Å
3
, Z = 4, calcd = 2.421 g cm

-3
, 

(Mo-K) = 7.223 mm
-1

, Rint = 0.0341, T = 293 K, R1(Fo) = 0.0323, (wR2(Fo
2
) = 0.0723) with a 

goodness-of-fit on F
2
 1.021. 2: [Co(C24H12N4O8Br4)(H2O)], M = 939.89, monoclinic, space group 

C2/c, a = 15.0926(18), b = 16.9747(18), c = 14.4400(16) Å,  = 120.52(4), V = 3186.9(6) Å
3
, Z = 4, 

calcd = 1.959 g cm
-3

, (Mo-K) = 6.109 mm
-1

, Rint = 0.0964, T = 293 K, R1(Fo) = 0.0669, (wR2(Fo
2
) 

= 0.2040) with a goodness-of-fit on F
2
 1.064. Data were collected by 2 scans (2max = 51.98º and 

36.58º for 1 and 2, respectively) on a Bruker APEXII diffractometer with graphite-monochromated 

MoK radiation ( = 0.71073 Å). The structures were solved by direct methods and refined on F2 by 

the SHELX-97 program. 

 

 

 

Magnetic Properties 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2. Temperature dependence of MT () and M (, inset) for 2. The solid lines correspond 
to the best fit. 
 

 

Experimental Isotherms 

Excess H2 adsorption isotherms at 77 K were obtained over the 0-20 bar pressure range by 

volumetric analysis (PCI instrument from Advanced Materials Corp., Pittsburgh, PA). The non-

ideality of hydrogen was taken into account by using the Peng-Robinson equation of state.
1
 Prior to 

the measurements, samples were activated on a high vacuum line (10
-4

 mbar) at 120 C overnight.  
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Computational Details  

The material was characterized geometrically, starting from the crystallographic coordinates. The 

geometric pore size distribution was calculated, which is related to the diameter of the largest sphere 

that can fit into the cavities without overlapping with any of the framework atoms
17

 and the 

accessible surface area
2
 using different probe molecules (Figure S1). Additionally, hydrogen 

adsorption at 77 K on 2 was studied using grand canonical Monte Carlo (GCMC) simulations 

(Figure S2).
3
 In the grand canonical ensemble, the chemical potential, the volume, and the 

temperature are kept fixed as in adsorption experiments. An atomistic model was used for 2, with the 

atoms frozen at the crystallographic positions. In the simulation, hydrogen molecules were randomly 

moved, rotated, inserted, and deleted, allowing the number of molecules in the framework to 

fluctuate. The chemical potential was related to the system pressure by the Peng-Robinson equation 

of state.
4
  The standard 12-6 Lennard-Jones (LJ) potential was used to model the interatomic 

interactions. The parameters for the framework atoms were obtained from the UFF force field,
5
 while 

molecular hydrogen was modeled by two LJ spheres (σH=2.72Å, εH/kB = 10.00 K, dH-H=0.74Å)
6, 

7
. The Lorentz_Berthelot mixing rules were employed to calculate the mixed parameters. Interactions 

beyond 17 Å were neglected for the simulations. Quantum effects were taken into account using the 

Feynman-Hibbs effective potential method,
8,

 which is sufficiently accurate at 77 K.
6,9,10

   A total 

number of 2 × 10
7
 Monte Carlo steps were performed. The first 50% was used for system 

equilibration, carefully ensuring that thermodynamic equilibrium was reached, while the remaining 

steps were used to calculate the ensemble averages. 
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Figure S3. Accessible surface area of 2 obtained with different probe molecules with a diameter ranging 

between 2.6 and 4.0 Å Vertical lines show the kinetic diameter of H2 (2.89 Å) and CH4 (3.8 Å), and so the 

accessible surface areas for this compound. 
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Figure S4. (left) Experimental, black closed circles, and simulated, grey closed circles, H2 isotherms at 77 K 

on 2. Scaled ( = 0.91) simulated isotherms, grey open circles. (right) Semilog representation of the H2 

isotherms. 
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