Bis(morpholine) hydrogen bond *pincer* – a novel series of heteroleptic Cu(II) coordination compounds as receptors for electron rich guests

Supplementary information

Figure S1. Ortep plot of the asymmetric unit in I with the labelling scheme for non-CH atoms. Thermal ellipsoids are shown for 50 % probability level. Hydrogen atoms are shown as spheres of arbitrary radius.

Figure 2. Ortep plot of the asymmetric unit in **II** with the labelling scheme for non-CH atoms. Thermal ellipsoids are shown for 50 % probability level. Hydrogen atoms are shown as spheres of arbitrary radius.

Figure S3. Ortep plot of the asymmetric unit in **III** with the labelling scheme for non-CH atoms. Thermal ellipsoids are shown for 50 % probability level. Hydrogen atoms are shown as spheres of arbitrary radius.

Figure S4. Ortep plot of the asymmetric unit in **IV** with the labelling scheme for non-CH atoms. Thermal ellipsoids are shown for 50 % probability level. Hydrogen atoms are shown as spheres of arbitrary radius.

Figure S5. Ortep plot of a double asymmetric unit in V with the labelling scheme for non-CH atoms. Thermal ellipsoids are shown for 50 % probability level. Hydrogen atoms are shown as spheres of arbitrary radius.

Figure S6. Ortep plot of a double asymmetric unit in VI with the labelling scheme for non-CH atoms. Thermal ellipsoids are shown for 50 % probability level. Hydrogen atoms are shown as spheres of arbitrary radius.

Figure S7. Ortep plot of the asymmetric unit in **VII** with the labelling scheme for non-CH atoms. Thermal ellipsoids are shown for 50 % probability level. Hydrogen atoms are shown as spheres of arbitrary radius.

Figure S8. Ortep plot of a double asymmetric unit in VIII with the labelling scheme for non-CH atoms. Thermal ellipsoids are shown for 50 % probability level. Hydrogen atoms are shown as spheres of arbitrary radius.

Figure S6. Ortep plot of the asymmetric unit in **IX** with the labelling scheme for non-CH atoms. Thermal ellipsoids are shown for 50 % probability level. Hydrogen atoms are shown as spheres of arbitrary radius.

Table SI 1. Hydrogen bonding geometry in **I**.^{*}

$D - H \cdots A^{operator}$	<i>d</i> (D–H)	$d(\mathbf{D}\cdots\mathbf{A})$	$d(\mathbf{H}\cdots\mathbf{A})$	$\varphi(D-H\cdots A)$			
C11–H11B…O7 ^a	0.971	3.270(7)	2.467	139.9			
N1–H1N···Cl1 ^b	0.910(16)	3.255(7)	2.345(15)	177.6 (1.2)			
N2–H2N···Cl1 ^{b}	0.910(15)	3.347(7)	2.510(16)	153.1(1.2)			
C20–H2OB····O4 c	0.969	3.364(8)	2.549	141.7			
N3–H3N····Cl2 ^{d}	0.909(17)	3.283(7)	2.409(16)	161.2(1.3)			
N4–H4N···Cl2 ^{d}	0.911(16)	3.288(7)	2.382(15)	173.5(1.4)			

a) -x+3/2, y+1/2, -z+3/2; b) -x+3/2, y+1/2, -z+1/2; c) x-1/2, -y+1/2, z+1/2; d) -x+3/2, y-1/2, -z+3/2

Table SI 2. Hydrogen bonding geometry in II.

$D-H\cdots A^{operator}$	<i>d</i> (D–H)	$d(\mathbf{D}\cdots\mathbf{A})$	$d(\mathbf{H}\cdots\mathbf{A})$	$\varphi(D-H\cdots A)$
C10–H10B····O3 ^a	0.970	3.297(7)	2.462	144.12
C9–H9A····O4 ^{b}	0.970	3.458(7)	2.724	132.87
C16–H16B…O4 ^b	0.971	3.426(6)	2.498	159.82
N2–H2N···Cl1 ^c	0.80(10)	3.328(9)	2.61(10)	152(9)
N1–H1N····Cl1 ^{c}	0.96(7)	3.248(8)	2.29(6)	171(5)

 \overline{a} -x+3/2, -y, z-1/2; b) -x+3/2, -y, z+1/2; c) -x+1/2, -y+1/2, -z+1

Table SI 3. Hydrogen bonding geometry in III.

D-H···A ^{operator}	<i>d</i> (D–H)	$d(\mathbf{D}\cdots\mathbf{A})$	$d(\mathbf{H}\cdots\mathbf{A})$	$\varphi(D-H\cdots A)$
$O5-H1W\cdots Cl2^{a}$	0.82(4)	3.486(5)	2.72 (5)	158(4)
N2–H2N····Cl2 ^{b}	0.88(3)	3.306(3)	2.44(3)	164 (2)
N1–H1N····Cl2 ^{b}	0.90(3)	3.362(3)	2.51(3)	159 (2)
$O5-H2W\cdots Cl2^{b}$	0.82(3)	3.227(5)	2.48(5)	152 (3)

a) *x*, *y*–1, *z*; b) –*x*, *y*–1/2, –*z*+1/2;

Table SI 4. Hydrogen bonding geometry in IV.

D-H···A ^{operator}	d(D–H)	$d(\mathbf{D}\cdots\mathbf{A})$	$d(\mathbf{H}\cdots\mathbf{A})$	$\varphi(D-H\cdots A)$
N1–H1N···O5	0.909(17)	2.980(3)	2.090(19)	166.1(1.5)
N2–H2N…O5	0.91(2)	3.199(4)	2.362(18)	153.0(1.5)
C10–H10····O3 ^a	0.930	3.352(4)	2.677	130.12
C9−H9····O3 ^{<i>a</i>}	0.930	3.493(4)	2.966	117.44
C12–H12B····O3 ^a	0.970	3.399(2)	2.947	109.65
C11–H11A····O3 ^a	0.970	3.485(3)	2.772	130.93
$O5-H2W\cdots Cl2^{b}$	0.72(4)	3.180(3)	2.46(4)	175(4)
C8–H8····O4 ^c	0.930	3.418(2)	2.545	156.53
$O5-H1W\cdots Cl2^d$	0.79 (4)	3.105(3)	2.35(3)	166(3)

 \overline{a} -x+1, -y+2, -z+2; b) -x+1, -y+2, -z+1; c) x-1, y, z+1; d) x+1, y, z

^{*} In all the tables, the standars uncertanties for distances and angles involning hydrogen atoms placed on calculated positions have been omitted.

Table SI 5. Hydrogen bonding geometry in V.

D-H····A ^{operator}	<i>d</i> (D–H)	$d(\mathbf{D}\cdots\mathbf{A})$	$d(\mathbf{H}\cdots\mathbf{A})$	$\varphi(D-H\cdots A)$
N1–H1N···Cl2	0.921	3.343(19)	2.443	165.62
O7−H2W…Cl2	0.839	3.571(15)	2.737	172.65
O7–H1W····Cl1 ^a	0.840	3.211(11)	2.423	156.60
$O7-H1W\cdots Cl1^{b}$	0.840	3.211(11)	2.423	156.60

a) -x+1, -y, -z+1; b) -x+1, -y, z+1

Table SI 6. Hydrogen bonding geometry in VI.

D-H···A ^{operator}	<i>d</i> (D–H)	$d(\mathbf{D}\cdots\mathbf{A})$	$d(\mathbf{H}\cdots\mathbf{A})$	$\varphi(D-H\cdots A)$
N2–H2A····Cl2	0.900	2.598(18)	1.729	161.49
O2−H2W…Cl1	0.894(17)	3.20 (3)	2.32(4)	171(3)
C14–H14B…O3 ^a	0.969	3.162(5)	2.613	116.09
C13–H13B⋯O3 ^{<i>a</i>}	0.971	3.404(5)	2.836	118.20
N1–H1N····Cl1 ^c	0.91(2)	3.28(3)	2.37(3)	176.1(6)
$O2-H1W\cdots Cl2^d$	0.89(6)	3.09(3)	2.21(5)	166(4)

a) x+1/2, y+1/2, z-1; b) x, y, z+1; c) x, -y+1, z+1; d) x-1, y, z+1

Table SI 7. Hydrogen bonding geometry in VII.

D-H···A ^{operator}	<i>d</i> (D–H)	$d(\mathbf{D}\cdots\mathbf{A})$	$d(\mathbf{H}\cdots\mathbf{A})$	$\varphi(D-H\cdots A)$
N1–H1N····O7 ^a	0.909(16)	3.275(3)	2.399(16)	161.8(1.2)
N1–H1N····O6 ^{a}	0.909(16)	3.104(4)	2.32(2)	144.4(1.4)
N2–H2N···O7 ^{a}	0.909(18)	3.578(3)	2.839(19)	139.4(1.3)
N2–H2N···O6 ^{a}	0.909(18)	2.981(3)	2.078(19)	172.7(1.6)
$C7-H7\cdots O4^{b}$	0.930	3.277(4)	2.592	130.86
$C8-H8\cdots O4^{b}$	0.929	3.405(4)	2.858	118.83

a) -x+3/2, y-1/2, -z+3/2; b) -x+3/2, y+1/2, -z+3/2

Table SI 8. Hydrogen bonding geometry in VIII.

D–H···A ^{operator}	<i>d</i> (D–H)	$d(\mathbf{D}\cdots\mathbf{A})$	$d(\mathbf{H}\cdots\mathbf{A})$	$\varphi(D-H\cdots A)$	
$C3-H3\cdots O2^{a}$	0.930	3.299(4)	2.532	140.05	
N1–H1N···S2 ^{b}	0.908(18)	3.476(2)	2.579(19)	169.5(1.3)	
a) $x_{1} x_{2} z_{1} z_{1} z_{2}$					

a) -x, -y, -z+1; b) x-1, y, z

Table SI 9. Hydrogen bonding geometry in IX.

D-H···A ^{operator}	<i>d</i> (D–H)	$d(\mathbf{D}\cdots\mathbf{A})$	$d(\mathbf{H}\cdots\mathbf{A})$	$\varphi(D-H\cdots A)$
$N2-H2\cdots S1^{a}$	0.911	3.557(7)	2.712	154.85
$N1-H1\cdots S1^{a}$	0.911	3.527(7)	2.681	155.05

a) *x*, *y*, *z*–1

Electronic Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry 2012

Figure S10. Hirshfeld-surfaces fingerprint plots for copper(II) coordination moieties.

Figure S11. Comparison of experimental and calculated PXRD patterns for a) I (blue – experimental, red-calculated); b) II ((green – experimental, grey-calculated); c) III (blue – experimental, red-calculated); d) IV (red – experimental, blue-calculated); e) V (grey – experimental, purple-calculated); f) VII (red – experimental, blue-calculated); g) VIII (blue – experimental, green-calculated); h) IX (blue – experimental, red-calculated); d) IV (red – experimental, green-calculated); h) IX (blue – experimental, red-calculated); h) IX (blue – experimental, red-calculated); h) IX (blue – experimental, red-calculated). VI was not included due to the immediate solvent egress at room temperature and consequent decomposition of the sample.

Electronic Supplementary Material (ESI) for CrystEngComm This journal is C The Royal Society of Chemistry 2012

Figure S12. Infrared spectra (KCl pellet, 4000–500 cm⁻¹) for compounds I (a), II (b), and III (c).

Electronic Supplementary Material (ESI) for CrystEngComm This journal is C The Royal Society of Chemistry 2012

Figure S12. Infrared spectra (KCl pellet, 4000–500 cm⁻¹) for compounds IV (a) and VII (b); c) Infrared-spectra overlap (KCl pellet, 2000–500 cm⁻¹) for compounds IV (black) and VII (red).

Electronic Supplementary Material (ESI) for CrystEngComm This journal is C The Royal Society of Chemistry 2012

(c) Figure S12. Infrared spectra (KCl pellet, 4000–500 cm^{-1}) for compounds V (a), VI (b), and VIII (c).

Figure S12. a) Infrared spectra (KCl pellet, 4000–500 cm⁻¹) for compound **IX**; b) Infrared-spectra overlap (KCl pellet, 2400–500 cm⁻¹) for compounds **III** (black) and **IX** (red).