Two dual-emissive Zn(II) coordination polymers with tunable photoluminescence properties

Shu-quan Zhang,^{*a,b*} Fei-long Jiang,^{*a*} Yang Bu,^{*a,b*} Ming-yan Wu,^{*a*} Jie Ma,^{*a,b*} Xiao-chen Shan,^{*a,b*} Ke-cai Xiong,^{*a,b*} Mao-chun Hong^{**a*}

^{*a*}Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China. Tel: +86-591-83792460. Fax: +86-591-83794946. E-mail: <u>hmc@fjirsm.ac.cn</u>.

^bGraduate School of the Chinese Academy of Sciences, Beijing, 100049, China.

Experimental Section

All reactants were reagent grade and used as purchased without further purification. Elemental analyses for C, H, N were carried out on a German Elementary Vario EL III instrument. The FT-IR spectra were performed on a Nicolet Magna 750 FT-IR spectrometer using KBr pellets in the range of 4000-400 cm⁻¹. Thermogravimetric analyses were recorded on a NETZSCH STA 449C unit at a heating rate of 10° C · min⁻¹ under nitrogen atmosphere. The power X-ray diffraction (XRD) patterns were collected by a Rigaku DMAX2500 X-ray diffractometer using Cu K α radiation (λ =0.154 nm). Fluorescent analysis of the complexes was performed on an Edinburgh Instruments FLS920 spectrofluorimeter equipped with both continuous (450 W) and pulse xenon lamps.

Synthesis of $[Zn_2(Hcpop)_2(dpe) (H_2O)]_n \cdot ndpe (1)$. A mixture of $Zn(NO_3)_2 \cdot 6H_2O$ (0.4 mmol, 118 mg), H₃cpop (0.05 mmol, 16 mg) and 6mL H₂O was stirred for 15 minutes, then a solution of dpe (0.15 mmol, 27mg) in 6ml n-pentenol was added with stirring at room temperature. After 15 minutes, the mixture was introduced in 20mL capped vial, which was heated to 85 °C for 72 hours. The resulting yellow rod-like crystals of **6** were filtered in 62% yield based on H₃cpop. Anal. Calcd for C₅₄N₄O₁₅H₃₈Zn₂ (Mr = 1113.62): cal: C, 58.24 %; H, 3.44%; N, 5.03%. found: C, 57.87%; H, 3.52%; N, 5.12%. Selected IR data (KBr pellet, cm⁻¹): 3650 (w), 3071 (w), 1617 (s), 1579 (s), 1504 (w), 1397 (m), 1365 (m), 1234 (m), 845 (m), 779 (w), 552 (m).

Synthesis of $[Zn_4(cpop)_2(dpe)_2(\mu-OH)_2]_n \cdot ndpe$ (2). The preparation of 2 was similar to that of 1 except that the acetonitrile was used instead of n-pentenol. After cooling to room temperature, light yellow block-shaped crystals of 2 were obtained in 77% yield based on H₃cpop. Anal. Calcd for C₆₆N₆O₁₆H₄₆Zn₄ (Mr = 1440.74): cal: C, 55.02 %; H, 3.22%; N, 5.83%. found: C, 54.84%; H, 3.28%; N, 5.72%. Selected IR data (KBr pellet, cm⁻¹): 3394 (w), 3048 (w), 1612 (s), 1590 (s), 1504 (m), 1394 (m), 1259 (m), 1230 (m), 1207 (w), 842 (m), 791 (w), 553 (m).

Crystallographic Analyses

The intensity data were collected on a Rigaku Mercury CCD diffractometer equipped with a graphite-monochromated Mo K α radiation (λ =0.71Å73 at room temperature. All absorption corrections were performed by using the multiscan program. The structure were solved by direct methods and refined by full-matrix least squares on F^2 with the SHELXTL-97 program.¹ Crystallographic data for the structures reported in this paper have been deposited in the Cambridge Crystallographic Data Center with CCDC reference numbers 871847 and 834613 for complexes 1-2.

Thermal Gravimetric Analysis (TGA)

To examine the thermal stability of the complex **1** and **2**, the thermal gravimetric analysis (TGA) experiments were carried out in the temperature range of 30-800 $^{\circ}$ C under a flow of nitrogen with heating rate of 10 $^{\circ}$ C ·min⁻¹ (Fig. S6). A total loss of 1.72% was observed for **1** in the temperature range of 30-190 $^{\circ}$ C, which can be attributed to the loss of one coordinated aqua molecule (calcd

1.62%), and the decomposition of the residue was observed at about 240 $^{\circ}$ C.TGA for **2** shows no obvious weight loss between 30 and about 300 $^{\circ}$ C. On further heating, the framework gradually decomposes.

X-ray Diffractometer Analysis (XRD)

For complex **1** and **2**, the positions of diffraction peaks of the experimental are consistent with the simulated XRD patterns well, indicating the phase purity of the as-synthesized simple (Fig. S7).

Fig. S1 (a) The coordination environment of Zn(II) atoms in complex **1**. Symmetry transformations used to generate equivalent atoms: A = -x, -y, 1-z, B = -x-1, y, 1-z, C=x-1, y, 1+z. (b) 2D (4, 4)-connected network constructed from 1D chains of **1**.

Fig. S2 The coordination environment of Zn(II) atoms in complex **2** (the hydrogen atoms are omitted for clarity). Symmetry transformations used to generate equivalent atoms: A= 1-x, 1-y, -z, B= 1+x, 3/2-y, 1/2+z, C= 1-x, 1-y, 1-z-, D= x-1, y, z.

Fig. S3 (a) View of 1D double chain based on binuclear Zn_2 clusters in **2**. (b) The drawing of cavities in complex **2**, the uncoordinated dpe ligands reserved in these cavities represent as space-filling mode.

Fig. S4 (a) Normalized emission spectra of ligands H_3 cpop and dpe at room temperature. (b) UV/Vis spectra of H_3 cpop, dpe and complexes **1-2** at room temperature.

Fig. S5 Solid-state PL spectra of **1** (a) and **2** (b) by variation of excitation length under the same metrical condition at 10 K.

Fig. S6 TGA curves for complexes 1 and 2

Fig. S7 Powder X-ray diffraction patterns of the simulated and as-synthesized samples of 1 and 2. Table S1. Selected Hydrogen-bond Lengths (Å) and Angles (°) for 1^a

	<i>D</i> —Н	НА	DA	<i>D</i> —H <i>A</i>
O13—H13AN4 ⁱ	0.92	1.75	2.593 (4)	152.6
O5—H5AN3 ⁱⁱ	0.91	1.66	2.563 (4)	173.7

^{*a*}Symmetry codes: (i) 1-*x*, 1-*y*, -*z*; (ii) 1+*x*, *y*, -1+*z*.

Complex 1 ^b		Complex 2^c		
λ_{em}/nm	τ/ns	$\lambda_{\rm em}/\rm nm$	τ/ns	
450	0.58/3.20/16.9	430	0.50/2.93	
540	2.59/0.43/8.04	515	0.69/3.44/11.1	
		550	0.84/4.11/13.9	
		595	1.04/2.59/14.3	

^aMeasurements were performed at room temperature. ^bLifetimes determined following excitation at

350 nm and 397 nm, respectively. ^cLifetimes determined following excitation at 360 nm.

Table S3.	Quantum yield of	of complexes	1 and 2 at room to	emperature	(298K)	and	10K
		1		1	· /		

Complex 1	$\Phi_{ m f,ex350}$ /%	$\Phi_{\rm f,ex370}$ /%	Φ _{f,ex 375} / %	$\Phi_{ m f,ex385}$ /%
298K	2.09	2.34	2.39	2.60
<u> </u>	$\frac{6.28}{\Phi_{\rm f}}$	$\frac{14.59}{\Phi_{\rm f} = 245/\%}$	$\frac{11.14}{\Phi_{\rm f}}$	$\frac{8.74}{\Phi_{\rm f}}$
298K	2.02	2.81	3.25	4.59
10K	9.44	9.72	8.98	8.90
Table S4. Crystallograp	phic data and struc	ture refinement deta	ils for 1 and 2	
complexes	1		2	
chemical formula	C ₅₄ N	$I_4O_{15}H_{38}Zn_2$	$C_{66}N_6O_{16}H_{46}Z$	n ₄
formula weight	1113	.62	1440.64	
crystal system	Tricl	inic	Monoclinic	
space group	<i>P</i> -1		$P2_{1}/c$	
<i>a</i> (Å)	11.69	97(2)	7.778(2)	
<i>b</i> (Å)	14.52	21(3)	22.865(7)	
c (Å)	14.70	60(3)	16.384(5)	
α (°)	73.64	46(4)	90.00	
$\beta(^{\circ})$	73.9	37(5)	99.471(5)	
γ(°)	87.7	31(7)	90.00	
V(Å ³)	2309	9.7(8)	2876(2)	
Ζ	2		4	
<i>T</i> /K	298(2)	298(2)	
$D_C(\text{g cm}^{-3})$	1.60	1	1.665	
$\mathcal{H}(\mathrm{mm}^{-1})$	1.12		1.73	
<i>F</i> (000)	1140)	1464	
θ range (°)	2.0-2	25.0	2.2–27.5	
Collected reflection	s 7862		6562	
unique reflections	5471		5846	
parameters	676		415	
Gof on F^2	0.93	5	1.014	
R_1^a ($I > 2\sigma(I)$)	0.04	50	0.0393	

WR_2^{b} (all data)	0.1000		0.1131			
${}^{a}\overline{R_{1}} = \Sigma F0 - Fc / \Sigma F0 . {}^{b}wR2 = [\Sigma w (Fo^{2} - Fc^{2})^{2} / \Sigma w (F0)^{2}]^{1/2}.$						
Table S5. Selected Bond Lengths (Å) and Bond Angles (°) for 1 and 2						
		1				
Zn1—O11 ¹	2.001 (2)	Zn2—O4 ¹¹	2.002 (2)			
Zn1—N1	2.002 (2)	Zn2—O8	2.013 (2)			
Zn1—O1	2.066 (2)	Zn2—O15	2.056 (3)			
Zn1—09	2.095 (2)	Zn2—N2 ⁱⁱⁱ	2.073 (3)			
Zn1—O3 ⁱⁱ	2.100 (2)	Zn2—O1	2.263 (2)			
O11 ⁱ —Zn1—N1	137.65 (11)	O4 ⁱⁱ —Zn2—O8	155.48 (9)			
O11 ⁱ —Zn1—O1	107.25 (9)	O4 ⁱⁱ —Zn2—O15	103.14 (11)			
N1—Zn1—O1	114.92 (10)	O8—Zn2—O15	97.78 (11)			
O11 ⁱ —Zn1—O9	85.09 (9)	O4 ⁱⁱ —Zn2—N2 ⁱⁱⁱ	93.66 (10)			
N1—Zn1—O9	95.06 (10)	O8—Zn2—N2 ⁱⁱⁱ	98.73 (10)			
O1—Zn1—O9	84.20 (9)	O15—Zn2—N2 ⁱⁱⁱ	90.85 (12)			
O11 ⁱ —Zn1—O3 ⁱⁱ	87.28 (9)	O4 ⁱⁱ —Zn2—O1	83.63 (8)			
N1—Zn1—O3 ⁱⁱ	100.75 (9)	O8—Zn2—O1	86.47 (8)			
O1—Zn1—O3 ⁱⁱ	83.65 (9)	O15—Zn2—O1	82.78 (9)			
O9—Zn1—O3 ⁱⁱ	163.06 (8)	N2 ⁱⁱⁱ —Zn2—O1	172.30 (11)			

Symmetry codes: (i) -1-*x*, -*y*, 1-*z*, (ii) -*x*, -*y*, 1-*z*, (iii) -1+*x*, *y*, 1+*z*

		2		
Zn1—O8	1.9508 (18)	Zn2—O8	1.9265 (17)	
$Zn1-O2^{i}$	1.9738 (18)	Zn2—O4 ⁱⁱⁱ	1.9982 (17)	
Zn1—O3	2.0173 (17)	Zn2—O6 ^{iv}	2.101 (3)	
Zn1—N2 ⁱⁱ	2.052 (2)	Zn2—O5 ^{iv}	2.300 (3)	
N1—Zn2	2.057 (2)	$O8$ — $Zn2$ — $O6^{iv}$	109.74 (10)	
$O8$ —Zn1— $O2^{i}$	115.78 (8)	O4 ⁱⁱⁱ —Zn2—O6 ^{iv}	137.00 (10)	
O8—Zn1—O3	97.82 (8)	N1—Zn2—O6 ^{iv}	92.87 (10)	
O2 ⁱ —Zn1—O3	103.96 (8)	O8—Zn2—O5 ^{iv}	111.44 (9)	

$O8$ — $Zn1$ — $N2^{ii}$	107.96 (8)	$O4^{m}$ —Zn2— $O5^{m}$	90.26 (9)
$O2^{i}$ —Zn1—N2 ⁱⁱ	118.40 (9)	N1—Zn2—O5 ^{iv}	133.89 (10)
O3—Zn1—N2 ⁱⁱ	110.82 (8)	$O6^{iv}$ —Zn2— $O5^{iv}$	58.71 (11)
O8—Zn2—O4 ⁱⁱⁱ	109.13 (8)	08—Zn2—O6 ^{iv}	109.74 (10)
O8—Zn2—N1	112.26 (8)	O4 ⁱⁱⁱ —Zn2—O6 ^{iv}	137.00 (10)
O4 ⁱⁱⁱ —Zn2—N1	88.95 (8)		

Symmetry codes: (i) 1-*x*, 1-*y*, -*z*, (ii) 1+*x*, 3/2-y, 1/2+z, (iii) -1+x, *y*, *z*, (iv) 1-*x*, 1-*y*, 1-*z*, (v) -1+x, 3/2-y, -1/2+z, (vi) 1+x, *y*, *z*

Complex 1						
Ring A	Ring B	Cg-Cg (Å)	Dihedral angel (°)	CgA_Perp(Å)	Slippage(Å)	
R1	R2	3.8306	10.02	3.552	1.434	
R3	R3 ⁱ	3.8684	0.00	3.591	1.439	
R1 = N(1)-	R1 = N(1)-C(33)-C(32)-C(31)-C(35)-C(34) $R2 = C(1)-C(2)-C(3)-C(4)-C(5)-C(6)$					
R3 = N(3)-C(45)-C(44)-C(43)-C(47)-C(46)						
Symmetry codes: (i) $-x$, $1-y$, $1-z$.						

Complex 2						
Ring A	Ring B	Cg-Cg (Å)	Dihedral angel (°)	CgA_Perp(Å)	Slippage(Å)	
R1	R2 ⁱ	4.3922	8.58	3.981	1.856	
R1 = N(1)-C(18)-C(17)-C(16)-C(20)-C(19) $R2 = N(2)-C(25)-C(24)-C(23)-C(27)-C(23)$ Symmetry codes: (i) x, 1/2-y, -1/2+z.)-C(27)-C(26)		

 d Cg-Cg = Distance between ring Centroids, CgA_Perp = Perpendicular distance of Cg(A) on ring B, Slippage = Distance between Cg(A) and Perpendicular Projection of Cg(B) on Ring A.

Reference

1 G. M. Sheldrick, SHELXS-97, Programs for X-ray Crystal Structure Solution; University of Göttingen: Germany, 1997.