Electronic Supplementary Information (ESI)

Weakly-coordinated stable platinum nanocrystals

Dorothea Marquardt,^a Juri Barthel,^b Markus Braun,^a Christian Ganter,^a Christoph Janiak^{a*}

^a Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany. Fax: +49-(0)211-8112287. Email: janiak@uni-duesseldorf.de

^b Gemeinschaftslabor für Elektronenmikroskopie RWTH-Aachen, Ernst Ruska-Centrum für Mikroskopie und Spektroskopie mit Elektronen D-52425 Jülich, Germany.

Bij	bhasic h	ydrosil	ylation of	pheny	lacety	lene with	triethylsilane	, by P	t-NP dis	persions in	n [BMIm]	[BF4]. ^a
-----	----------	---------	------------	-------	--------	-----------	----------------	--------	----------	-------------	----------	---------------------

Entry	Pt catalyst /µmol	Molar ratio substrate:catalyst	Mass% Pt in IL	V(IL) /µl	Reaction time /min	Conversion ^b /%	TOF ^c /h ⁻¹	Ratio ^d distal :
								proximal
3	12.5	400:1	0.5	410	6	100	4000	4:1

^a Phenylacetylene (0.54 ml, 5.0 mmol) and triethylsilane (0.79 ml, 5.0 mmol). Microwave (MW) heating, The pressure inside the MW reactor was set to $p_{max} = 3.0$ bar. The applied MW energy depended on the pressure and so the reaction temperature varied from 90 °C-150 °C. The maximum reaction temperature was set 150 °C. It was observed that reaction temperature which could be reached depended on the amount of IL or Pt-NPs in the biphasic reaction mixture. ^b Conversion determined from crude product by ¹H-NMR spectroscopy. ^cTOF = turnover frequency [mol(product)/mol(Pt) × h⁻¹]. ^d Determined from ¹H-NMR spectra of the reaction mixture. See example spectrum for entry 3 as Fig. S1 in ESI[†]. ¹H-NMR signals for the mixture of distal (main product) and proximal (byproduct) products were taken from the literature.

Fig. S1 (below) ¹H NMR spectrum with expanded sections as inserts. Example spectra of a 4:1mixture of distal (main product) and proximal (byproduct) vinylsilanes at full (100%) conversion (cf. Table 2 in manuscript, entry 3 or see above).

