Variable Architecture of Znic Coordination Polymers

Modeled By Tetra-pyridinate Ligand With Different Anions

Fan Yu, ^{*a*} Wen-Jing Yu, ^{*b*} Bao Li, ^{*b*,*} Tian-le Zhang ^{*b*}

^aSchool of chemistry and environmental engineering, Jianghan University, Wuhan, Hubei 430056, P.R. China, ^b Department of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China

Experimental sections

Materials and General Methods. All starting materials were obtained commercially and were used without further purification. Elemental analyses for C, H, N were performed on a Perkin-Elmer 240Q elemental analyzer. The IR spectra were recorded in range of 400-4000 cm⁻¹ on a Nicolet 5DX spectrometer (KBr pellets). The ligand TPOM was synthesized by a literature method.¹ Low-pressure N₂ adsorption measurements (up to 1 bar) were performed on Micromeritics ASAP 2020 M+C surface area and pore size analyzer.

Synthesis of $\{[Zn_2(TPOM2)_2(Cl)_4]\}_n$ (1). A mixture of $ZnCl_2$ (13mg, 0.1 mmol) and TPOM2 (5.5mg, 0.025 mmol) was dissolved in 15 mL of CH_3CN . The final mixture was refluxed for 1 hours. Large bulk crystals were obtained from the filtrate. Yield of the reaction was ca. 15% based on TPOM2. Anal. Calcd for $C_{50}H_{50}Cl_8N_8O_9Zn_4$: H 3.47%, C 41.36%, N 7.72%; found H 3.12%, C 40.96%, N 7.22%.

Synthesis of {[Zn₂(TPOM2)(L1)₄]·4H₂O}_n (2). A mixture of Zn(OAc)₂ (18mg, 0.1 mmol), benzoic acid (8 mg, 0.05 mmol) and TPOM2 (5.5mg, 0.025 mmol) was dissolved in 12 mL of CH₃OH/H₂O (1:5, v/v). The final mixture was placed in a Parr Teflon-lined stainless steel vessel (25mL) under autogenous pressure and heated at 130°C for 3 days. Needle-like crystals were obtained, and crystals were filtered off, washed with mother liquid, and dried under ambient conditions. Yield of the reaction was ca. 41% based on TPOM2. Anal. Calcd for C₅₃H₅₂N₄O₁₆Zn₂: H 4.63 %, C 56.25%, N 4.95% ; found H 4.11 %, C 56.76%, N 4.23%.

Synthesis of $\{[Zn_4(TPOM2)(L2)_4]$ ·guest $\}_n$ (3). A mixture of $Zn(OAc)_2$ (18mg, 0.1 mmol), H_2BDC (10 mg, 0.05 mmol) and TPOM2 (5.5mg, 0.025 mmol) was dissolved in 12 mL of DMF/CH₃OH/H₂O (1:1:4, v/v/v). The final mixture was placed in a Parr Teflon-lined stainless

^{*} Correspondence e-mail: libao@mail.hust.edu.cn Fax: 86-027-87543532

steel vessel (25mL) under autogenous pressure and heated at 140°C for 3 days. Block-like crystals were obtained, and crystals were filtered off, washed with mother liquid, and dried under ambient conditions. Yield of the reaction was ca. 60% based on TPOM2. Anal. Calcd for dyhydrated $C_{57}H_{40}N_4O_{20}Zn_4$: H 2.96%, C 50.25%, N 4.11%; found H 3.45%, C 51.15%, N 4.99%.

Synthesis of $\{[Zn(TPOM)(Cl)_2]\}_n$ (4). The synthesis process is very similar to 1 except for TPOM. The final mixture was refluxed for 1 hours. Large bulk coloress-block crystals were obtained from the filtrate. Yield of the reaction was ca. 15% based on TPOM. Anal. Calcd for $C_{25}H_{24}Cl_2N_4O_4Zn$: H 4.17%, C 51.70%, N 9.65%; found H 3.92%, C 51.20%, N 9.22%.

Synthesis of {[$Zn_2(TPOM)(L1)_4$]·2 H_2O }_n (5). A mixture of $Zn(OAc)_2$ (18mg, 0.1 mmol), benzoic acid (8 mg, 0.05 mmol) and TPOM (5.5mg, 0.025 mmol) was dissolved in 12 mL of CH₃OH/H₂O (1:5, v/v). The final mixture was placed in a Parr Teflon-lined stainless steel vessel (25mL) under autogenous pressure and heated at 120°C for 3 days. Needle-like crystals were obtained, and crystals were filtered off, washed with mother liquid, and dried under ambient conditions. Yield of the reaction was ca. 41% based on TPOM. Anal. Calcd for C₅₃H₄₈N₄O₁₄Zn₂: H 4.42 %, C 58.10%, N 5.11% ; found H 4.22 %, C 58.76%, N 5.35%.

Synthesis of {[$Zn_2(TPOM)(L2)_2$]·4H₂O}_n (6). A mixture of Zn(OAc)₂ (18mg, 0.1 mmol), H₂BDC (10 mg, 0.05 mmol) and TPOM (5.5mg, 0.025 mmol) was dissolved in 8 mL of CH₃OH/H₂O (4:4, v/v). The final mixture was placed in a Parr Teflon-lined stainless steel vessel (25mL) under autogenous pressure and heated at 140°C for 3 days. Block-like crystals were obtained, and crystals were filtered off, washed with mother liquid, and dried under ambient conditions. Yield of the reaction was ca. 60% based on TPOM. Anal. Calcd for dyhydrated C₅₇H₄₀N₄O₂₀Zn₄: H 4.13%, C 50.48%, N 5.74%; found H 4.42%, C 51.05%, N 5.89%.

X-Ray Structural Determination. X-ray diffraction data of **1** ($0.25 \times 0.2 \times 0.15 \text{ mm}$), **2** ($0.3 \times 0.2 \times 0.2 \text{ mm}$), **4** ($0.25 \times 0.15 \times 0.1 \text{ mm}$), **5** ($0.25 \times 0.15 \times 0.10 \text{ mm}$) and **6** ($0.25 \times 0.15 \times 0.10 \text{ mm}$) were collected on Oxford Gemini S Ultra diffractometer using Mo-*Ka* ($\lambda = 0.71073 \text{ Å}$) radiation at room temperature , except for **3** ($0.2 \times 0.2 \times 0.1 \text{ mm}$) using Cu-*Ka* ($\lambda = 1.54178 \text{ Å}$) radiation at 170 K. The structures of complexes were solved by direct methods, and the non-hydrogen atoms were located from the trial structure and then refined anisotropically with SHELXTL using a full-matrix leastsquares procedure based on F^2 values.² The hydrogen atoms

The method of *SQUEEZE* in *PLATON* was carried out in the final crystal resolutions for **3** and **6**²¹. CCDC-871661 (1), CCDC-871662 (2), CCDC-871663 (3), CCDC-871663 (4), CCDC-877830 (4), CCDC-877831 (5) and CCDC-877832 (6) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>http://www.ccdc.cam.ac.uk/datarequest/cif</u>.

Reference:

- (1) Ryan, P. E.; Lescop, C.; Laliberté, D.; Hamilton, T.; Maris, T.; Wuest, J. D. *Inorg. Chem.* **2009**, *48*, 2793.
- (2) (a) Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G. L.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G. G; Polidori, G; Spagna, R. J. Appl. Crystallogr. 1999, 32, b115-119; b) G. M. Sheldrick, SHELXL-97; Program for refinement of crystal structures. University of Göttingen, Göttingen, Germany, 1997.

Figure S1. XRD spectrum of 3

Figure S2. the packing mode of the 2-fold interpenetrating structure of **5**, showing the pores which were filled with isolated aqua molecules.