Supporting Information

Conformational Control of Ligands to Create a Finite Metal-Organic Cluster and an Extended Metal-Organic Framework

Lalit Rajput, ${ }^{\text {a }}$ Dongwook Kim, ${ }^{\text {a }}$ and Myoung Soo Lah* ${ }^{\text {a }}$
${ }^{\text {a }}$ Interdisciplinary School of Green Energy, Ulsan National Institute of Science \& Technology, Ulsan, Korea.

Table S1. Crystal data and structure refinement for 1.

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=23.33^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Largest diff. peak and hole
$\mathrm{C}_{60} \mathrm{H}_{42} \mathrm{~N}_{6} \mathrm{O}_{21} \mathrm{Cu}_{3}$
1373.66

173(2) K
0.71073 A

Cubic
Pn-3n
$\mathrm{a}=32.365(4) \AA \quad \alpha=90^{\circ}$
$\mathrm{b}=32.365(4) \AA \quad \beta=90^{\circ}$
$\mathrm{c}=32.365(4) \AA \quad \gamma=90^{\circ}$
33902(7) \AA^{3}
8
$0.538 \mathrm{Mg} / \mathrm{m}^{3}$
$0.402 \mathrm{~mm}^{-1}$
5592
$0.50 \times 0.49 \times 0.43 \mathrm{~mm}^{3}$
2.88 to 23.33°.
$-35<=\mathrm{h}<=34,-35<=\mathrm{k}<=30,-32<=\mathrm{l}<=32$
108634
4057 [R(int) $=0.2337]$
98.3 \%

Semi-empirical from equivalents
0.8460 and 0.8241

Full-matrix least-squares on F^{2}
4057 / 82 / 119
1.341
$\mathrm{R} 1=0.1515, \mathrm{wR} 2=0.4379$
$R 1=0.2465, \mathrm{wR} 2=0.4844$
0.619 and $-0.335 \mathrm{e} \cdot \AA^{-3}$

Table S2. Crystal data and structure refinement for 2.

Empirical formula	$\mathrm{C}_{278} \mathrm{H}_{340} \mathrm{~N}_{44} \mathrm{O}_{94} \mathrm{Ni}_{14}$
Formula weight	6623.88
Temperature	96(2) K
Wavelength	0.80000 A
Crystal system	Monoclinic
Space group	C2/c
Unit cell dimensions	$\mathrm{a}=41.121(8) \AA$ ¢ $\quad \alpha=90^{\circ}$
	$\mathrm{b}=20.457(4) \AA \quad \beta=106.71(3)^{\circ}$
	$\mathrm{c}=39.436(8) \AA \AA^{\circ} \mathrm{C}=90^{\circ}$
Volume	31773(11) \AA^{3}
Z	4
Density (calculated)	$1.385 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$1.179 \mathrm{~mm}^{-1}$
F(000)	13840
Crystal size	$0.50 \times 0.50 \times 0.33 \mathrm{~mm}^{3}$
Theta range for data collection	1.63 to 28.00°
Index ranges	$-48<=\mathrm{h}<=48,-23<=\mathrm{k}<=23,-46<=1<=46$
Reflections collected	93568
Independent reflections	26217 [R(int) $=0.0407]$
Completeness to theta $=28.00^{\circ}$	97.5 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.6969 and 0.5901
Refinement method	Full-matrix-block least-squares on F^{2}
Data / restraints / parameters	26217 / 177 / 2303
Goodness-of-fit on F^{2}	1.085
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0643, \mathrm{wR} 2=0.1933$
R indices (all data)	$\mathrm{R} 1=0.0803, \mathrm{wR} 2=0.2031$
Largest diff. peak and hole	0.668 and $-0.425 \mathrm{e} \cdot \AA^{-3}$

Fig. S1 PXRD patterns of 1. (a) A simulated PXRD pattern from the single crystal structure of $\mathbf{1}$,
(b) from the single crystal structure of $\mathbf{1}$ with $[1,1,1]$ preferred orientation, and (c) a PXRD pattern of the as-synthesized sample.

Fig. S2 The $14 \mathrm{Ni}(\mathrm{II})$ ions of $\mathbf{2}$ in a crystallographic inversion center are bridged via eight μ^{3}-hydroxo oxygen atoms (shown in pink).

Fig. S3 PXRD patterns of 2. (a) A simulated PXRD pattern from the single crystal structure of 2 and (b) a PXRD of the as-synthesized sample.

