Face-to-face stacking of dianionic quinoid rings in crystals of alkali salts of 2,5-dihydroxyquinone in view of π –system polarization

Supporting Information

Krešimir Molčanov^a, Biserka Kojić-Prodić^a, and Darko Babić^{a,b}

^aRudjer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia

^bDepartment of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia

Compound	Li ₂ DHQ·2H ₂ O
Empirical formula	C ₆ H ₄ Li ₂ O ₅
Formula wt. / g mol ⁻¹	187.99
Crystal dimensions / mm	0.11 x 0.05 x 0.02
Space group	C 2/m
<i>a</i> / Å	15.9708(7)
b / Å	6.4417(2)
<i>c</i> / Å	7.9093(3)
α / °	90
β / °	116.462(5)
γ/°	90
Z	4
$V / \text{\AA}^3$	728.45(5)
$D_{\rm calc}$ / g cm ⁻³	1.714
μ/mm^{-1}	1.305
Θ range / °	6.19 - 76.05
T/K	293(2)
Radiation vawelength	1.54179 (CuKα)
Diffractometer type	Xcalibur Nova
Range of h, k, l	-18 < h < 19;
	-5 < k < 8;
	-9 < l < 9
Reflections collected	1618
Independent reflections	818
Observed reflections	758
$(I \ge 2\sigma)$	
Absorption correction	Multi-scan
R _{int}	0.0157
R(F)	0.0363
$R_w(F^2)$	0.1084
Goodness of fit	1.081
H atom treatment	Free
No. of parameters	96
No. of restraints	3
Δho_{max} , Δho_{min} (eÅ ⁻³)	0.299; -0.269

Table S1 Crystallographic, data collection and structure refinement details for $Li_2DHQ·2H_2O$ (redetermination).

	o / Å	h / Å		or / °	Q / O	~ / °	rel.
	a / A	0 / A	C/A	u /	þ7	Y /	/kJ mol ⁻¹
Na ₂ DHQ–A	3.73	9.93	7.71	90.0	100.7	90.0	0.0
Na_2DHQ-B^{-1}	6.08	8.12	7.54	122.4	113.3	90.5	107.95
Na ₂ DHQ–C	3.73	9.93	7.72	90.0	100.7	90.0	0.0
K ₂ DHQ–X-ray	3.93	11.24	8.33	90.0	102.8	90.0	_
K ₂ DHQ–A	4.00	10.59	8.38	90.1	103.5	90.0	0.0
K_2 DHQ–B ¹	6.80	8.14	7.95	120.8	115.3	90.0	27.31
K ₂ DHQ–C	3.56	11.26	8.11	90.0	90.1	81.0	27.25
Rb ₂ DHQ– X-ray ¹	7.23	8.17	8.28	120.0	115.9	90.0	_
Rb ₂ DHQ–A	4.42	11.07	8.37	90.0	100.8	90.1	10.62
Rb ₂ DHQ–B ¹	7.50	8.12	8.19	119.7	117.2	90.0	0.0
Rb ₂ DHQ–C	3.82	11.99	8.11	89.8	89.0	90.2	10.12
$(NH_4)_2DHQ-X$ -ray ¹	7.03	8.24	8.24	60.1	64.8	64.8	_
$(NH_4)_2DHQ-B^{-1}$	6.94	8.23	8.23	61.7	65.0	65.1	_
Cs ₂ DHQ–X-ray ¹	3.89	7.64	7.64	114.6	90.0	90.0	_
Cs_2DHQ-B^{-1}	8.21	8.17	8.43	119.0	119.1	90.0	2.28
Cs ₂ DHQ–C	4.13	12.21	8.16	90.0	89.8	89.7	0.0

 Table S2 Primitive unit cell parameters of the experimental and calculated structures.

 The crystallographic centered unit cells in Table 4 are transorfmed into primitive ones prior to calculations.

 Relative energies are given in respect to the lowest energy structure of the given salt

Figure S1 ORTEP-3 drawing of a disordered DHQ^{2-} anion in Cs₂DHQ with symmetry elements shown. Due to a disorder, hydrogen atom could not be located; O2 atom and C-attached H are partly populated (pp = 0.25). Displacement ellipsoids are drawn at the probability level of 50 % and hydrogen atoms are depicted as spheres of arbitrary radii.

Figure S2 ORTEP-3 drawing of two symmetry-independent DHQ^{2-} anions in $Li_2DHQ\cdot 2H_2O$. Displacement ellipsoids are drawn at the probability level of 50 % and hydrogen atoms are depicted as spheres of arbitrary radii.

Figure S3 ORTEP-3 drawing of DHQ^{2-} anion in Rb₂DHQ. Displacement ellipsoids are drawn at the probability level of 50 % and hydrogen atoms are depicted as spheres of arbitrary radii.

Figure S4 ORTEP-3 drawing of DHQ^{2-} anion in $(NH_4)_2DHQ$. Displacement ellipsoids are drawn at the probability level of 50 % and hydrogen atoms are depicted as spheres of arbitrary radii.

Figure S5 ORTEP-3 drawing of different coordination spheres in two symmetryindependent lithium cations in Li₂DHQ·2H₂O. The penta-coordination of Li1 is between trigonal bipyramid and square-pyramid with Li…O distances ranging from 1.995(4) to 2.110(2) Å. The tetrahedral environment about Li2 with Li2…O distances form 1.908(4) to 2.027(2) Å. Displacement ellipsoids are drawn at the probability level of 50 % and hydrogen atoms are depicted as spheres of arbitrary radii. Symmetry operators: *i*) 1 - x, *y*, 2 - z; *ii*) -1/2 + x, -1/2 - y, *z*; *iii*) -1/2 + x, 1/2 + y, *z*; *iv*) *x*, -y, *z*.

Figure S6 ORTEP-3 drawing of the cation distorted octahedral environment in K_2DHQ with $K\cdotsO1^{ii} = 2.779(2)$, $K\cdotsO1^{iii} = 2.817(2)$, $K\cdotsO1^{iv} = 3.010(2)$, $K\cdotsO2 = 2.700(1)$, $K\cdotsO2^i = 2.724(1)$, $K\cdotsO2^v = 2.745(1)$ Å. Displacement ellipsoids are drawn at the probability level of 50 % and hydrogen atoms are depicted as spheres of arbitrary radii. Symmetry operators: *i*) 1 + x, *y*, *z*; *ii*) -1 - x, -1/2 + y, 3/2 - z; *iii*) -1 - x, 1 - y, 1 - z; *iv*) -x, -1/2 + y, 3/2 - z; *v*) -x, 1 - y, 2 - z.

Figure S7 ORTEP-3 drawing of cation octa-coordination sphere in Rb₂DHQ. Rb⁺ is located at the special position on the twofold rotation axes (8 g) 0, *y*, ¹/₄ of *Ibam* space group. Rb1···O1^{*i*} and Rb···O1^{*ii*} = 2.974(3) Å, Rb···O1^{*iii*} and Rb···O1^{*iv*} = 2.983(3) Å; Rb···O2 and Rb···O2^{*v*} = 3.011(3) Å; Rb···O2^{*iii*} and Rb···O2^{*iv*} = 3.286(3) Å. Displacement ellipsoids are drawn at the probability level of 50 % and hydrogen atoms are depicted as spheres of arbitrary radii. Symmetry operators: *i*) -1/2 + x, 1/2 + y, 1/2 + z; *ii*) 1/2 - x, 1/2 + y, -z; *iii*) 1/2 - x, 1/2 - y, 1/2 + z; *iv*) -1/2 + x, 1/2 - y, -z; *v*) -x, *y*, 1/2 - z.

Figure S8 Crystal packing of $(NH_4)_2DHQ$ viewed in the direction [100]. DHQ²⁻ anions are located on a crystallographic mirror plane and are therefore parallel.

Computational details

The basis sets used in the calculations are Gaussian sets designed for solid state calculations with the Crystal program (<u>http://www.crystal.unito.it/</u>). They were taken from the web page: <u>http://www.tcm.phy.cam.ac.uk/~mdt26/crystal.html</u>. The references to papers with the details on their use are included in the tables listed below. The format is appropriate for Gaussian 09.

```
Title:
         hydrogen atom
Author:
         M. D. Towler
Ref.: A. R. Porter, M. D. Towler, R. J. Needs, Muonium as a hydrogen
analogue in silicon and germanium: Quantum effects and hyperfine
parameters, Phys. Rev. B 60 (1999) 13534-13546
Н О
S 8 1.0
50362.3
          0.0000020
29510.2
          0.00000104
 4251.44 0.00001154
 827.084 0.00007679
 193.406
          0.00043129
   50.0397 0.00219849
   13.7402 0.01055974
    3.9009 0.04760939
S 2 1.0
    1.1397 0.18487289
   0.346 0.47812170
S
 1 1.0
   0.109 1.0
Ρ
 1 1.0
    0.1098 1.0
Title: carbon "6-21G*"
Author: Pople et al. (modified by M. Catti)
Refs.: M. Catti, A. Pavese, R. Dovesi, V. R. Saunders, Static
lattice and electron properties of MgCO3 (magnesite) calculated by
abinitio periodic Hartree-Fock methods, Phys. Rev. B 47 (1993) 9189-
9198
Modified by M. D. Towler for carbon graphite
C 0
S 6 1.0
3047.52490
              0.0018347
457.369510
            0.0140373
103.948690
             0.0688426
              0.2321844
  29.2101550
   9.28666300 0.4679413
   3.16392700 0.3623120
SP 1 1.0
  8.4379430 1.0
                   1.0
SP 1 1.0
  1.88128850 1.0 1.0
```

SP 1 1.0 0.58550980 1.0 1.0 SP 1 1.0 0.1808 1.0 1.0 D 1 1.0 0.8325 1.0

Title: nitrogen "6-21G*"

Author: Pople et al.

Ref.: R. Dovesi, M. Causa, R. Orlando, C. Roetti, V. R. Saunders, Ab initio approach to molecular-crystals - a periodic Hartree-Fock study of crystalline urea, J. Chem. Phys. **92** (1990) 7402-7411

N 0 S 6 1.0 4150.0 0.001845 0.00184 620.1 141.7 0.06863 40.34 0.2286 13.03 0.4662 4.47 0.3657 SP 2 1.0 5.425 -0.4133 0.238 1.149 1.224 0.859 SP 1 1.0 0.2832 1.0 1.0 D 1 1.0 0.8 1.0

Title: oxygen "6-21G*"

Author: J. S. Binkley, J. A. Pople, W. J. Hehre, Self-consistent molecular-orbital methods. 21. Small split-valence basis-sets for 1st-row elements, J. Am. Chem. Soc. 102 (1980) 939-947; M. S. Gordon, J. S. Binkley, J. A. Pople, Self-consistent molecular-orbital methods .22. Small split-valence basis-sets for 2nd-row elements, J. Am. Chem. Soc. 104 (1982) 2797-2803

Ref.: R. Dovesi, M. Causa, R. Orlando, C. Roetti, V. R. Saunders, Ab initio approach to molecular-crystals - a periodic Hartree-Fock study of crystalline urea, J. Chem. Phys. **92** (1990) 7402-7411

O 0 S 6 1.0 5.472E+03 1.832E-03 8.178E+02 1.410E-02 1.864E+02 6.863E-02 5.302E+01 2.294E-01 1.718E+01 4.664E-01 5.912E+00 3.642E-01 SP 2 1.0 7.403E+00-4.045E-01 2.446E-01 1.576E+00 1.222E+00 8.540E-01 SP 1 1.0 3.737E-01 1.000E+00 1.000E+00 D 1 1.0 8.000E-01 1.000E+00

Title: sodium "8-511G"
Comment: optimized in NaCl
Refs.: M. Prencipe, A. Zupan, R. Dovesi, E. Apra, V. R. Saunders,
Ab-initio study of the structural-properties of LiF, NaF, KF, LiCl,

NaCl, and KCl,Phys. Rev. B 51 (1995) 3391-3396; E. Apra, M. Causa, M. Prencipe, R. Dovesi, V. R. Saunders, On the structural-properties of NaCl - An ab initio study of the B1-B2 phase-transition, J. Phys. Condens. Matter 5 (1993) 2969-2976

S	8	⊥.	0						
5	670	0.	0	Ο.	00	022	5		
	806	50.	0	Ο.	00	191			
	170)4.	0	Ο.	01	105			
	44	13.	6	Ο.	05	006			
	13	33.	1	Ο.	16	91			
	4	15.	8	0.	36	58			
	1	7.	75	0.	39	98			
		7.	38	0.	14	94			
SP	5	1.	0						
	11	9.	0	-0.	00	673	0.	0080)3
	2	25.	3.3	-0.	07	98	0.	063	3
	-	7	80	-0	07	93	0	2074	1
		، ۲	0.0	0	30	56	0	3398	3
		1	289	0	56	२०	0	3726	5
SP	1	1	0	•••	00	55	•••	5720	5
01	-	⊥ • ∩	578	1	\cap		1	0	
ЧD	1	1	0	± •	0		±•	0	
O1	T	· ·	223	1	\cap		1	\cap	
		υ.	525	·	0		⊥ •	0	

Title: potassium

Comments: optimized in KCl (K +1), extra d-shell in K2O essential for accurate C44 elastic constant Refs.: R. Dovesi, C. Roetti, C. Freyriafava, M. Prencipe, V. R. Saunders, On the elastic properties of lithium, sodium and potassium

oxide - An ab initio study, Chem. Phys. 156 (1991) 11-19

к О

S	8	1.0		
17	25	500.0	0.00022	0
2	243	320.0	0.00192	
	51	40.0	0.01109	
	13	343.9	0.04992	
	4	04.5	0.1702	
	1	.39.4	0.3679	
		54.39	0.4036	
		22.71	0.1459	
SP	6	1.0		
	4	02.0	-0.00603	0.00841
		93.5	-0.0805	0.0602
		30.75	-0.1094	0.2117
		11.92	0.258	0.3726
		5.167	0.684	0.4022
		1.582	0.399	0.186
SP	5	1.0		
		17.35	-0.0074	-0.0321
		7.55	-0.129	-0.062
		2.939	-0.6834	0.1691
		1.19	1.08	1.500
		0.674	1.03	1.060
SP	1	1.0		
		0.389	1.0	1.0
SP	1	1.0		
		0.216	1.0	1.0

D 3 1.0 3.94 0.160 1.072 0.313 0.394 0.400) 3 5	
Title: Rb+ all	electron basis	
When: 1995	VICH WIISON	
Refs: unpublis	shed	
Rb 0		
S 9 1.0		
2953550.000000	0.000034	
420969.000000	0.000298	
81358.700000	0.002060	
5164 480000	0.011200	
1622 390000	0.157300	
573.192000	0.352400	
221.489000	0.423500	
89.080900	0.151900	
SP 7 1.0		
6647.380000	-0.000333	0.000875
1508.870000	-0.006260	0.008570
435.794000	-0.059000	0.055900
146.168000	-0.146600	0.220000
23 626100	0.242500	0.447900
9.797900	0.222700	0.089900
SP 6 1.0	0.1111.000	
180.092000	0.001090	-0.010500
53.295200	-0.030400	-0.074900
19.313200	-0.350600	0.076900
7.943500	0.289600	1.003900
3.171400	1.054700	1.227300
1.070600	0.151700	0.196700
D 5 I.U 288 005000	0 00/180	
83 137700	0.036080	
29.003600	0.163320	
10.918500	0.393700	
4.116200	0.473820	
D 1 1.0		
1.472200	1.0	
SP 3 1.0		
3.381600	-0.664900	-0.194000
1.421100	-0.580600	0.592600
U.JUKOOLU SP 1 1 0	2.913/00	2.705300
0.208300	1.0	1.0

Title: caesium

Author:	M.D. Towler
When:	May 1996
Cs 0 S 9 1 0	
5091567.0	0.0000487
738658.0	0.000401

1	12 12	0308.0 1490.2 2040.1 3845.22 1368.4 545.478 229.8491	0.00229 0.01113 0.04600 0.15350 0.348 0.4323 0.2042	0 0 0
SP	7 14	1.0 4926.078	-0.00034	9 0.001090
		3459.0	-0.00632	0.00995
	-	386.043	-0.1462	0.2171
		158.325 73.9081	0.0889 0.617	0.457600 0.4702
QD	6	36.2394	0.5006	0.2275
SE	0	363.971	0.00632	-0.0129
		137.485 56.6146	-0.0238 -0.3172	-0.0733 0.00223
		25.8734	-0.0706	0.8454
	_	5.978	0.4774	0.4984
D	6	1.0 426.715	0.0145	
		127.457	0.1005	
		47.9214	0.3177	
		9.1352	0.2873	
		4.0878	0.0496	
SP	3	1.0	0 400	0 100
		9.7098	0.488	-0.109
		2.7177	0.0711	-0.0248
D	3	1.0		
		7.9974	0.2128	
		3.2744	0.5687	
П	1	1.3821	0.42/1	
D	1	0.5496	1.0	
SP	3	1.0		
		4.8272	0.1174	0.3367
		2.4442	1.0941	1.3927
SP	1	1.0	0.00/8	0.0449
~-	-	0.4725	1.0	1.0
SP	1	1.0		
		0.1789	1.0	1.0