Crystallization Behavior and Formation Mechanism

of Dendrite Cu₂O Crystals

Jinbo Xue, Wei Liang,^{*} Xuguang Liu, Qianqian Shen, Bingshe Xu

*College of Materials Science and Engineering

Taiyuan University of Technology

Taiyuan 030024 (P.R. China)

Tel:(+86)0351-6018398

E-mail: xuejinbo@tyut.edu.cn

Figure S1. XRD pattern of Cu₂O particles deposited on ITO substrates with current density of a) J=0.5mA/cm² in static electrolyte (S5), b) J=0.7 mA/cm² in static electrolyte (S7), c) J=0.5mA/cm² in stirred electrolyte (A5), d) J=0.7 mA/cm² in stirred electrolyte (A7), containing 0.02 M cupric acetate (* represents ITO' s diffraction peaks).

Figure S2. Energy disperse spectrum (EDS) of Cu_2O particles deposited on ITO substrates with current densities of 0.7 mA/cm² a) in static electrolyte (S7), b) in stirred electrolyte (A7).

Figure S3. Crystal structures of Cu (a) and cuprite Cu₂O(b)

Figure S4. Mott–Schottky plots of Cu₂O samples measured in 0.5 M Na₂SO₄ solution

with 2 kHz: (a) Deposited in static electrolyte; (b) Deposited in stirred electrolyte.