Construction of a series of Metal–Organic Frameworks with one neutral tetradentate

ligand and rigid carboxylate co-ligand

Ling Qin, Jin-Song Hu, Ming-Dao Zhang, Yi-Zhi Li, and He-Gen Zheng*

Figure S2. IR spectra of complex 2

State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, P. R. China *E-mail: <u>zhenghg@nju.edu.cn</u> (H. Z.). Fax: 86-25-83314502

Figure S3. IR spectra of complex 3

Figure S5. IR spectra of complex 5

Figure S6. IR spectra of complex 6

Figure S7 Views of the 1D chain by L ligands and Zn ions.

Figure S8. UV-vis absorbance spectra of 4 (a) and 5 (b) at room temperature.

Figure S9. Solid-state photoluminescent spectra of 1-3, 6, and corresponding ligands at room temperature.

Figure S10. The conjugation degree of benzene ring and pyridine ring in the neutral tetradentate N-containing ligand.

Figure S11. Powder X-ray diffraction patterns of complex 1

Figure S12. Powder X-ray diffraction patterns of complex 2

Figure S13. Powder X-ray diffraction patterns of complex 3

Figure S14. Powder X-ray diffraction patterns of complex 4

Figure S15. Powder X-ray diffraction patterns of complex 5

Figure S16. Powder X-ray diffraction patterns of complex 6

Figure S17. The TGA diagrams of complexes 1-6.

Table S1. Selected Bond Lengths (Å) and Angles (deg) for Complexes $\mbox{1-6}.$

Complex 1

Zn1-N1	2.053(3)	$Zn1-N2^{a}$	2.050(3)
Zn1-O2	1.924(2)	Zn1-O4	1.932(2)
N1- Zn1- N2 ^a	102.70(11)	N1- Zn1-O2	120.23(11)
N1- Zn1-O4	110.85(11)	N2 ^a - Zn1- O2	111.28(12)
N2 ^a - Zn1-O4	113.59(12)	O2- Zn1-O4	98.70(11)

Complex 2

Zn1-N1	2.018(8)	Zn1-N3 ^a	2.041(8)
Zn1-O4	1.935(6)	Zn1-O7	1.919(6)
Zn2- N2 ^b	2.107(6)	Zn2- N4 ^c	2.263(7)
Zn2- O2	2.022(6)	Zn2- O6	1.981(7)
Zn2- O1w	2.202(6)	N1 -Zn1- N3 ^a	106.0(3)
N1 -Zn1- O4	104.0(3)	N1 -Zn1- O7	124.5(4)
N3 ^a -Zn1- O4	96.8(3)	N3 ^a -Zn1- O7	106.6(3)
O4 -Zn1- O7	115.1(3)	$N2^{b}$ –Zn2- $N4^{c}$	87.6(2)
N2 ^b –Zn2- O2	148.7(3)	N2 ^b –Zn2- O6	109.7(3)
$N2^{b}$ –Zn2- O1w	90.6(2)	N4 ^c –Zn2- O2	92.2(2)
N4 ^c –Zn2- O6	90.2(3)	N4 ^c –Zn2- O1w	177.2(3)
O2 –Zn2- O6	101.6(3)	O2 –Zn2- O1w	88.2(2)
O6 –Zn2- O1w	92.4(3)		
	Com	plex 3	
Cd1-N1	2.362(4)	Cd1-N4 ^a	2.322(4)
Cd1-O1	2.330(3)	Cd1-O3 ^c	2.214(3)
Cd1-O4 ^b	2.291(3)	Cd1-O1w	2.313(3)
N1-Cd1- N4 ^a	168.08(16)	N1-Cd1- O1	83.24(12)
N1-Cd1- O3 ^c	87.68(15)	N1-Cd1- O4 ^b	81.74(13)
N1-Cd1- O1w	94.64(13)	N4 ^a -Cd1- O1	89.85(13)
N4 ^a -Cd1- O3 ^c	101.69(15)	N4 ^a -Cd1- O4 ^b	88.56(15)
N4 ^a -Cd1- O1w	93.86(15)	O1-Cd1- O3 ^c	160.63(11)
O1-Cd1- O4 ^b	89.80(11)	O1 -Cd1- O1w	81.10(11)
$O3^{c}$ -Cd1- $O4^{b}$	105.83(13)	O3 ^c -Cd1- O1w	82.62(13)
O4 ^b -Cd1- O1w	170.57(11)		
	Com	plex 4	
Ni1-N1	2.117(3)	Ni1-N3 ^a	2.093(3)

Ni1-O2	2.100(2)	Ni1-O4 ^b	2.024(2)
Ni1-O5 ^c	2.060(2)	Ni1-O6	2.066(2)
N1- Ni1- N3 ^a	173.68(11)	N1- Ni1- O2	86.32(10)
N1- Ni1- O4 ^b	88.67(11)	N1- Ni1- O5 ^c	85.71(11)
N1- Ni1- O6	93.76(11)	N3 ^a - Ni1- O2	89.98(10)
N3 ^a - Ni1- O4 ^b	95.67(11)	N3 ^a - Ni1- O5 ^c	89.22(11)
N3 ^a - Ni1- O6	91.12(11)	O2- Ni1- O4 ^b	170.68(9)
02- Ni1- O5 ^c	90.79(9)	O2 - Ni1- O6	86.38(9)
O4 ^b - Ni1- O5 ^c	96.67(10)	O4 ^b - Ni1- O6	86.11(10)
O5 ^c - Ni1- O6	177.14(9)		
	Con	pplex 5	
Co1-N1	2.018(2)	Co1-N1 ^a	2.018(2)
Co1-O1	1.914(2)	Co1-O1 ^a	1.914(2)
Co2- N2 ^c	2.105(3)	Co2- O5 ^b	2.114(2)
Co2- O6 ^b	2.188(2)	Co2- O4	2.060(2)
Co2-O1w	2.158(3)	Co2- O2w	2.135(2)
N1 -Co1- N1 ^a	103.97(15)	N1 -Co1- O1	121.61(11)
N1 -Co1- O1 ^a	98.48(10)	N1 ^a -Co1- O1	98.48(10)
N1 ^a -Co1- O1 ^a	121.61(11)	O1 -Co1- O1 ^a	113.91(15)
N2 ^c –Co2- O5 ^b	158.54(9)	N2 ^c –Co2- O6 ^b	98.09(9)
N2 ^c –Co2- O4	100.54(9)	N2 ^c –Co2- O1w	90.21(10)
N2 ^c –Co2- O2w	90.00(10)	O5 ^b –Co2- O6 ^b	60.48(8)
O5 ^b –Co2- O4	100.92(9)	O5 ^b –Co2- O1w	91.26(10)
O5 ^b –Co2- O2w	90.13(10)	O6 ^b –Co2- O4	161.16(9)
O6 ^b –Co2- O1w	97.07(10)	O6 ^b –Co2- O2w	87.20(9)
O4 –Co2- O1w	85.66(9)	O4 –Co2- O2w	90.03(9)
O1w –Co2- O2w	175.65(9)		

Complex 6

Zn1-N1	2.026(3)	Zn1-N1 ^a	2.026(3)
Zn1-O2	1.906(3)	Zn1-O2 ^a	1.906(3)
Zn2- N2 ^b	2.066(4)	Zn2- O4	2.041(3)
Zn2- O5	2.334(3)	Zn2- O7 ^c	2.002(3)
Zn2- O8	2.183(3)	Zn2- O9	2.208(3)
N1 -Zn1- N1 ^a	104.5(2)	N1 -Zn1- O2	121.37(14)
N1 -Zn1- O2 ^a	98.76(14)	N1 ^a -Zn1- O2	98.76(14)
$N1^a$ -Zn1- $O2^a$	121.37(14)	O2 -Zn1- O2 ^a	113.3(2)
N2 ^b –Zn2- O5	93.59(13)	N2 ^b –Zn2- O4	152.41(14)
$N2^{b}$ –Zn2- O7 ^c	104.56(13)	N2 ^b –Zn2- O8	90.30(13)
N2 ^b –Zn2- O9	89.18(13)	O4 –Zn2- O5	58.84(12)
$O4 - Zn2 - O7^{c}$	102.94(13)	O4 –Zn2- O8	92.81(14)
O4 –Zn2- O9	88.22(13)	O5 –Zn2- O7 ^c	160.78(13)
O5 –Zn2- O8	98.32(12)	O5 –Zn2- O9	82.95(12)
$O7^{c}$ –Zn2- O8	85.66(9)	O7 ^c –Zn2- O9	90.91(12)
O8 –Zn2- O9	178.66(11)		

Symmetry codes: for 1: a = x, 2 - y, 1/2 + z. for 2: a = -1 + x, -1 + y, z; b = x, -1 + y, -1 + z; c = 1 - x, -y, - z.; for 3: a = -1 + x, y, 1 + z; b = x, -1/2 - y, 1/2 + z; c = 1 - x, 1/2 + y, 5/2 - z.; for 4: a = -1 + x, y, 1 + z; b = 1 - x, -1/2 + y, 3/2 - z; c = x, 1/2 - y, 1/2 + z. for 5: a = 1 - x, y, 0.5 - z; b = x, -y, -0.5 + z; c = 0.5 - x, 1.5 - y, -z. for 6: a = 1 - x, y, 1.5 - z; b = 1.5 - x, -1.5 + y, 1.5 - z; c = x, -y, -0.5 + z.