Electronic Supporting Information

Naphthalene-based linkers for metal phosphonates.

Synthesis, structure, and interesting conformational flexibility influence on final lanthanum hybrids

Michat J. Biatek ${ }^{*, a}$, Jan Janczak ${ }^{b}$, Jerzy Zoń ${ }^{*}$,

a) Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie Street, 50-383 Wrocław, Poland
b) Institute of Low Temperature and Structural Research, Polish Academy of Sciences, 2 Okolna Street, P.O. Box 1410, 50-950 Wrocław, Poland
c) Department of Chemistry, Wrocław University of Technology, 27 Wybrzeze

Wyspianskiego Street, 50-370 Wrocław, Poland

[^0]
Detailed synthetic procedures for ligands

All chemicals used in the synthesis were readily available from commercial sources (Sigma Aldrich, Merck) and were used as received. Infrared absorption spectra of solids were measured on a PerkinElmer FT-IR 1600 spectrophotometer in KBr discs. NMR spectra for ${ }^{1} \mathrm{H},{ }^{31} \mathrm{P}$ and ${ }^{13} \mathrm{C}$ were recorded with a Bruker Avance DRX 300 instrument at the indicated frequencies. Melting points were determined using a Boetius apparatus and were uncorrected. Elemental analyses for C and H were performed with Elementar vario EL III analyzer and for P by ICP-OES method.

Naphthalene-1,4-diphosphonic acid, [1, H_{4} NDP(1,4)]

Tetraethyl naphthalene-1,4-diphosphonate (1b)

1,4-dibromonaphthalene $(1.70 \mathrm{~g}, 5.94 \mathrm{mmol}, \mathbf{1 a})$, obtained by the literature procedure, ${ }^{1}$ was placed in a two-necked round-bottom flask and heated to $160{ }^{\circ} \mathrm{C}$ under argon atmosphere. After 1,4dibromonaphthalene melted $\mathrm{NiBr}_{2}(0.160 \mathrm{~g}, 0.732 \mathrm{mmol})$ was added and next triethyl phosphite (2.60 $\left.\mathrm{cm}^{3}, 16.7 \mathrm{mmol}\right)$ was added dropwise over 7 h . After 3 h second portion of $\mathrm{NiBr}_{2}(0.100 \mathrm{~g}, 0.458$ mmol) was added. The mixture was heated at the same temperature and stirred under argon overnight. Dark to orange viscous oil was obtained and was purified by column chromatography on silica gel 60 (32-63 $\mu \mathrm{m}$) using a $9: 1 \mathrm{v} / \mathrm{v}$ mixture of ethyl acetate/ethanol. As less polar compound, first diethyl 4-bromonaphthalene-1-phosphonate is eluted $\left(\mathrm{R}_{\mathrm{f}}=0.45\right.$, silica gel on PET foils with fluorescent indicator 254 nm , UV lamp for visualization, AcOEt : EtOH in ratio 9:1 v/v). Target compound (1b) was isolated in yield $1.19 \mathrm{~g}(50 \%)$ in form of a light oil, which can solidified upon standing giving a colorless crystalline solid, mp. 57-59 ${ }^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.29$ (silica gel on TLC-PET foil with fluorescent indicator 254 nm , UV lamp for visualization, AcOEt : EtOH in ratio 9:1 v/v).
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.74-8.52(\mathrm{~m}, 2 \mathrm{H}), 8.31-8.19(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.62(\mathrm{~m}, 2 \mathrm{H}), 4.40-$ $3.88(\mathrm{~m}, 8 \mathrm{H}), 1.32(\mathrm{t}, J=7.1 \mathrm{~Hz}, 12 \mathrm{H}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(121 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 18.03$ (s) (18.85 (s) for diethyl 4-bromonaphthalene-1-phosphonate); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 132.94-132.28$ (imposition of signals of two carbon atoms), 130.42 (dd, $J=180.9,3.4 \mathrm{~Hz}$), 127.65 (s), 127.37 (s), $62.55(\mathrm{~d}, J=5.1 \mathrm{~Hz}), 16.37(\mathrm{~d}, J=7.3 \mathrm{~Hz})$.

Naphthalene-1,4-diphosphonic acid (1)

Tetraethyl naphthalene-1,4-diphosphonate $(1.40 \mathrm{~g}, 3.50 \mathrm{mmol}, \mathbf{1 b})$, concentrated hydrochloric acid $\left(8.0 \mathrm{~cm}^{3}\right)$ and water $\left(8.0 \mathrm{~cm}^{3}\right)$ were mixed together. Obtained solution was heated at reflux for 20 h . Then white precipitate was filtered and dried providing pure acid 1c. Additional amount of the product was acquired after evaporation of the residual solution and crystallization of obtained solid from distilled water. Total yield of compound $1: 0.959 \mathrm{~g}(95 \%), \mathrm{mp} .265-275^{\circ} \mathrm{C}$ (softening of crystals).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO) $\delta 8.65(\mathrm{dd}, \mathrm{J}=5.9,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.03(\mathrm{dd}, J=13.2,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.63$ (dd, $J=6.5,3.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.10(\mathrm{br} \mathrm{s}, 4 \mathrm{H}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($121 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO) $\delta 11.74(\mathrm{~s}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO) $\delta 134.88(\mathrm{dd}, J=176.4,3.1 \mathrm{~Hz}, 132.83(\mathrm{dd}, J=11.0,11.0 \mathrm{~Hz}$), $130.93-$ $130.31(\mathrm{~m}), 128.32(\mathrm{~s}), 126.97(\mathrm{~s})$; IR (KBr, cm^{-1}) $v_{\max } 3220(\mathrm{br} \mathrm{s}), 2706$ (br s), 2285 (br s), 1928 (m), 1715 (m), 1514 (s), 1452 (m), 1423 (w), 1358 (w), 1305 (m), 1216 (vs), 1169 (s), 1109 (s), 1015 (vs), 974 (s), 936 (s), 858 (s$), 815$ (s$), 761$ (vs), 681 (m), 624 (s), 560 (m), 533 (s), 506 (m), 482 (s), 459 (m), 440 (s), 415 (m); Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{6} \mathrm{P}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (324.16): C, 37.05; H, 4.35; P, 19.11. Found: C, 37.12; H, 4.08; P, 19.13.

[^1]
1-(phosphono)naphthalene-4-(methylphosphonic) acid, [2, H_{4} NDP(1,4C)]

1-bromo-4-(bromomethyl)naphthalene (2a) was obtained in two steps, according to known procedures, from 1-methylnaphthalene. ${ }^{2}$

Diethyl 1-bromonaphthalene-4-(methylphosphonate) (2b)

1-bromo-4-(bromomethyl)naphthalene ($8.0 \mathrm{~g}, 25.4 \mathrm{mmol}, \mathbf{2 a}$) and triethyl phosphite ($5.32 \mathrm{~cm}^{3}, 30.6$ $\mathrm{mmol})$ were added to round-bottom flask equipped with a short distillation set. Mixture was slowly heated and after short time clear solution was obtained. Reaction started when was heated to about 100 ${ }^{\circ} \mathrm{C}$ and what was indicated by evolving EtBr, a volatile by-product. It was condensed and collected $(2.36 \mathrm{~g}, 85 \%)$. Temperature of an oil bath rose to $150^{\circ} \mathrm{C}$ and solution was mixed and heated for 2 h in total. Completeness of conversion was also monitored by TLC. Obtained orange oil was additionally heated for 30 min under reduced pressure to remove all volatile substances. The crude product was used in the next step without further purification. For spectral characterization of ester $\mathbf{2 b}$, a sample was purified by column chromatography on silica gel $60(32-63 \mu \mathrm{~m})$ using ethyl acetate as eluent.
1.21 g (98% after column chromatography), $\mathrm{R}_{\mathrm{f}}=0.21$ (silica gel on PET foils with fluorescent indicator 254 nm , UV lamp for visualization, ethyl acetate). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $8.31-8.25$ $(\mathrm{m}, 1 \mathrm{H}), 8.14-8.07(\mathrm{~m}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{dd}, J=7.7,3.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.06-3.85(\mathrm{~m}, 4 \mathrm{H}), 3.60(\mathrm{~d}, J=22.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.17(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(121$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 25.99(\mathrm{~s}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 133.21(\mathrm{~d}, J=5.1 \mathrm{~Hz}), 132.19(\mathrm{~d}, J=2.7$ $\mathrm{Hz}), 129.52(\mathrm{~d}, J=4.1 \mathrm{~Hz}), 128.75(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 128.44(\mathrm{~d}, J=9.9 \mathrm{~Hz}), 127.85(\mathrm{~s}), 127.24(\mathrm{~s})$, $126.89(\mathrm{~s}), 125.03(\mathrm{~d}, J=1.3 \mathrm{~Hz}), 122.40(\mathrm{~d}, J=5.4 \mathrm{~Hz}), 62.29(\mathrm{~d}, J=6.8 \mathrm{~Hz}), 30.81(\mathrm{~d}, J=139.5$ $\mathrm{Hz}), 16.36(\mathrm{~d}, J=6.0 \mathrm{~Hz})$.

Diethyl 1-(dietoxyphosphoryl)naphthalene-4-(methylphosphonate) (2c)

Diethyl 1-bromonaphthalene-4-(methylphosphonate) ($1.56 \mathrm{~g}, \quad 4.36 \mathrm{mmol}, \quad 2 \mathbf{b})$ and $1,3-$ diisopropylbenzene $\left(2 \mathrm{~cm}^{3}\right)$ was placed in a two-necked round-bottom flask and heated to $160{ }^{\circ} \mathrm{C}$ under argon atmosphere. After that, $\mathrm{NiBr}_{2}(0.048 \mathrm{~g}, 0.22 \mathrm{mmol})$ was added and next addition of triethyl phosphite $\left(0.92 \mathrm{~cm}^{3}, 5.30 \mathrm{mmol}\right)$ was started dropwise over 5 h . There were two more portions of $\mathrm{NiBr}_{2}(0.096 \mathrm{~g}, 0.44 \mathrm{mmol})$ added to the mixture after 1.5 and 3 h from start of the reaction. The mixture was heated at the same temperature and stirred under argon overnight. Orange solution was obtained and evaporated under reduced pressure and heating. Product was purified by column chromatography on silica gel $60(32-63 \mu \mathrm{~m})$ using a $9: 1 \mathrm{v} / \mathrm{v}$ mixture of ethyl acetate/ethanol as eluent. Target compound ($\mathbf{2 c}$) was isolated in yield $62 \%(1.12 \mathrm{~g})$ in form of light oil, which can solidified upon standing giving a colorless crystalline solid, mp. $52-54^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{f}}=0.20$ (silica gel on PET foils with fluorescent indicator 254 nm , UV lamp for visualization, using a 9:1 v / v mixture of ethyl acetate/ethanol).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.53(\mathrm{dd}, J=6.3,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.22-8.11(\mathrm{~m}, 2 \mathrm{H}), 7.59(\mathrm{dd}, J=6.6$, $3.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-7.49(\mathrm{~m}, 1 \mathrm{H}), 4.26-3.87(\mathrm{~m}, 8 \mathrm{H}), 3.66(\mathrm{~d}, J=22.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $6 \mathrm{H}), 1.15(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H})] ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(121 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 25.68(\mathrm{~d}, J=4.9 \mathrm{~Hz}), 19.76(\mathrm{~d}, J=$ $4.9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 134.43(\mathrm{dd}, J=9.7,3.6 \mathrm{~Hz}), 133.98(\mathrm{dd}, J=8.9,4.0 \mathrm{~Hz})$, 133.12 (dd, $J=11.4,2.6 \mathrm{~Hz}), 132.21(\mathrm{dd}, J=12.9,5.0 \mathrm{~Hz}), 127.24(\mathrm{~s}), 127.45-127.07(\mathrm{~m}), 127.02$ (s), 126.49 (s), 125.14 (s$), 124.09$ (dd, $J=184.1,4.1 \mathrm{~Hz}), 62.29$ (d, $J=7.0 \mathrm{~Hz}), 62.18$ (d, $J=5.4 \mathrm{~Hz}$), $31.40(\mathrm{~d}, J=138.4 \mathrm{~Hz}), 16.33(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 16.25(\mathrm{~d}, J=2.3 \mathrm{~Hz})$.

[^2]
1-(phosphono)naphthalene-4-(methylphosphonic) acid (2)

Diethyl 1-(dietoxyphosphoryl)naphthalene-4-(methylphosphonate) ($1.12 \mathrm{~g}, 2.70 \mathrm{mmol}, \mathbf{2 c}$) was placed in round-bottom flask and dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(8 \mathrm{~cm}^{3}\right)$. Next, trimethylsilyl bromide ($2.14 \mathrm{~cm}^{3}$, 16.2 mmol) was added to the solution and flask was closed, wrapped with parafilm and put on magnetic stirrer at room temperature for 24 h . Subsequently, the solution was evaporated under reduced pressure at a bath, which temperature was below $70^{\circ} \mathrm{C}$. Light, viscous oil of $\mathbf{2 d}$ was obtained. Methanol $\left(8 \mathrm{~cm}^{3}\right)$ was added to the oil and obtained solution was mixed for 24 h . After that, solution was evaporated and distilled water was added and again evaporated. This operation was repeated twice. Cream precipitate of pure acid (2) was obtained ($0.805 \mathrm{~g}, 98 \%$), mp. 247-252 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO) $\delta 8.59$ (dd, $J=5.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}$), 8.61 (br s, 4 H), $8.22-8.18(\mathrm{~m}, 1 \mathrm{H})$, 7.94 (dd, $J=15.7,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.41(\mathrm{~m}, 1 \mathrm{H}), 3.51(\mathrm{~d}, J=22.2 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($121 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO) $\delta 21.07\left(\mathrm{~d}, J=4.6 \mathrm{~Hz}\right.$), $13.32(\mathrm{~d}, J=4.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(75$ MHz, d_{6}-DMSO) $\delta 135.66(\mathrm{dd}, J=9.5,3.2 \mathrm{~Hz}), 133.14(\mathrm{dd}, J=11.2,2.3 \mathrm{~Hz}), 132.40(\mathrm{dd}, J=12.0$, $4.6 \mathrm{~Hz}), 131.60(\mathrm{dd}, J=8.3,3.4 \mathrm{~Hz}), 129.38(\mathrm{dd}, J=180.5,3.9 \mathrm{~Hz}), 128.08(\mathrm{~d}, J=5.0 \mathrm{~Hz}), 127.43$ (dd, $J=15.6,7.1 \mathrm{~Hz}), 126.53(\mathrm{~s}), 126.18(\mathrm{~s}), 126.13(\mathrm{~s}), 33.24(\mathrm{~d}, J=131.3 \mathrm{~Hz}) ; \operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right) v_{\max }$ 3414 (br m), 2916 (br s), 2358 (br s), 1906 (m), 1622 (m), 1582 (m), 1514 (m), 1422 (m), 1392 (m), 1322 (m), 1212 (s), 1128 (vs), 1094 (vs), 1012 (vs), 976 (vs), 944 (s), 910 (s), 852 (m), 758 (s), 718 $(\mathrm{m}), 672(\mathrm{~m}), 634(\mathrm{~m}), 604(\mathrm{~m}), 550(\mathrm{~m}), 504(\mathrm{~s}), 480(\mathrm{~s}), 450(\mathrm{~m})$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{6} \mathrm{P}_{2}$ (302.16): C, 43.72; H, 4.00; P, 20.50. Found: C, 43.92; H, 3.98; P, 20.52.

The obtainment of ligands single crystals

Naphthalene-1,4-diphosphonic acid [NDP(1,4)hydr, (1)]

Obtained crystals were air sensitive due to loss of crystal water. Suitable single crystal was obtained from a diluted solution slightly acidified with hydrochloric acid. The solution was prepared by dissolving of the acid sample in acidified water in high temperature. After cooling small needles precipitated. The solution was being diluted until a small amount of bigger needles was obtained after cooling.

1-(phosphono)naphthalene-4-(methylphosphonic) acid [$\mathrm{NDP}(1,4 \mathrm{C})$ hydr, (2a); NDP(1,4C), (2b)]

Good quality crystal of hydrate was obtained by crystallization from distilled water. Concentrated solution was prepared in elevated temperature and then cooled slowly. Polycrystalline precipitate was removed and after a few days suitable single crystals appeared.
Anhydrous crystals were isolated from a residue of starting materials in the room temperature reaction of ligand with samarium chloride ($0.1: 0.1 \mathrm{mmol})$ in water solution $\left(6 \mathrm{~cm}^{3}\right)$.

pH-potentiometry

The protonation constants were determined by pH -potentiometric titrations of $2 \mathrm{~cm}^{3}$ samples at ligand concentration of $1 \cdot 10^{-3} \mathrm{~mol} / \mathrm{dm}^{3}$ for $\mathrm{H}_{4} \mathrm{NDP}(1,4)$, and $2 \cdot 10^{-3} \mathrm{~mol} / \mathrm{dm}^{3}$ for $\mathrm{H}_{4} \mathrm{NDP}(1,4 \mathrm{C})$. The measurements were carried out in argon atmosphere at 298 K at constant ionic strength (0.10 M KNO_{3}) with a MOLSPIN pH -meter equipped with a Russel CMAW 711 semi-micro combined electrode and a $0.250 \mathrm{~cm}^{3}$ micrometer syringe containing base solution at 0.103084 M concentration, which was assigned by the titration of potassium hydrogen phthalate with well-known concentration. The samples were titrated from $\mathrm{pH}=2$ (coordination reactions mixtures pH). The protonation constants of ligands were calculated by means of a general computational program, SUPERQUAD $5.20 .{ }^{3}$ Standard deviations quoted were computed by SUPERQUAD and refer to random errors only.

[^3]Table S1. Selected bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ in the structures $\mathbf{1 - 4}$

NDP(1,4)hydr (1)					
P1-O1	1.4867(14)	P2-O5	1.5435(16)	O2-P1-C1	105.50(9)
P1-O2	$1.5417(16)$	P2-C4	1.795 (2)	O3-P1-C1	107.07(10)
P1-O3	1.5456(17)	O1-P1-O2	114.28(9)	O3-P1-C1-C2	-1.9(2)
P1-C1	1.794(2)	O1-P1-O3	109.17(9)	O5-P2-C4-C3	3.3(2)
P2-O4	$1.4892(14)$	O2-P1-O3	108.28(9)	P2-C4-C5-C6	-0.3(3)
P2-O6	1.5408(17)	O1-P1-C1	112.21(9)	P1-C1-C10-C9	1.0(3)
NDP(1,4C)hydr (2a)					
P1-O1	1.4863(10)	P2-C11	1.7935(14)	C5-C4-C3-C2	4.8(3)
P1-O2	$1.5469(10)$	O1-P1-O2	112.71(6)	C10-C1-C2-C3	-4.3(3)
P1-O3	$1.5638(11)$	O1-P1-O3	113.76(7)	P1-C1-C10-C9	6.9(3)
P1-C1	1.7853(13)	O2-P1-O3	105.20(6)	C11-C4-C5-C6	-6.3(3)
P2-O4	1.4993 (10)	O1-P1-C1	113.81(6)	O2-P1-C1-C2	-12.12(16)
P2-O5	1.5402(10)	O2-P1-C1	106.65(6)	O5-P2-C11-C4	166.57(13)
P2-O6	1.5454(11)	O3-P1-C1	103.88(6)		
NDP(1,4C) (2b)					
P1-O1	1.4941(17)	P2-C11	1.773(2)	C5-C4-C3-C2	1.7(3)
P1-O2	1.5248(19)	O1-P1-O2	110.62(10)	C10-C1-C2-C3	-1.6(3)
P1-O3	1.537(2)	O1-P1-O3	113.40(12)	P1-C1-C10-C9	-1.5(3)
P1-C1	1.779(2)	O2-P1-O3	109.18(14)	C11-C4-C5-C6	-2.9(3)
P2-O4	1.4809(17)	O1-P1-C1	111.60(10)	O1-P1-C1-C2	-8.1(2)
P2-O5	1.5441(16)	O2-P1-C1	108.98(11)	O6-P2-C11-C4	168.55(14)
P2-O6	1.5496(15)	O3-P1-C1	102.73(10)		
La-NDP(1,4) (3)					
La1-O21	2.4253(14)	P11-O11	1.4921(15)	P21-O23	1.5694(16)
La1-O24 ${ }^{\text {i }}$	2.4321(13)	P11-O12	1.5402(17)	P22-O24	1.4930 (14)
La1-O11	$2.4885(16)$	P11-O13	$1.5602(16)$	P22-O25	$1.5167(14)$
La1-O22 ${ }^{\text {ii }}$	$2.5315(14)$	P12-O14	1.4944(16)	P22-O26	$1.5835(15)$
La1-O2W	2.5372(18)	P12-O15	$1.5133(15)$	O1W-La1-O21	118.78(5)
La1-O15 ${ }^{\text {iii }}$	2.5528(16)	P12-O16	1.5722(15)	$\mathrm{O} 11-\mathrm{O} 25^{\mathrm{iv}}-\mathrm{O} 15^{\text {iii }}$-O22 ${ }^{\text {ii }}$	$1.9(5)$
La1-O25 ${ }^{\text {iv }}$	2.5819(14)	P21-O21	$1.4892(15)$	$\mathrm{O} 11-\mathrm{O} 22^{\text {ii }}-\mathrm{O} 24^{\mathrm{i}}-\mathrm{O} 2 \mathrm{~W}$	1.9(5)
La1-O1W	$2.6225(17)$	P21-O22	1.5208(14)	O2W-O24i-O15iii-O25 ${ }^{\text {iv }}$	2.4(5)
(i) -x, -y, 1-z; (ii) -x, -0.5+y, 0.5-z; (iii) -x, -y, -z; (iv) $x, 0.5-\mathrm{y},-0.5+\mathrm{z}$					
La-NDP(1,4C) (4)					
La-O1	2.4447(16)	La-O5W	2.669(3)	P2-C4	1.800(2)
La-O1 ${ }^{\text {i }}$	2.4447(16)	P1-O1	1.4976 (16)	O5W-La-O4W	120.49(11)
La-O3W	2.5541(17)	P1-O2	$1.535(6)$	O5W-La-O1W	107.67(13)
La-O3W ${ }^{\text {i }}$	2.5541(17)	P1-O3	$1.556(6)$	O4W-La-O1W	131.84(11)
La-O2W ${ }^{\text {i }}$	2.5758(18)	P1-C11	$1.782(2)$	O2W-O1-O1 ${ }^{\text {i }}$-O2W ${ }^{\text {i }}$	0.00
La-O2W	2.5758(18)	P2-O4	1.521(4)	O3W ${ }^{\text {i }}$-O1-O1 ${ }^{\text {i}}-03 \mathrm{~W}$	0.00
La-O1W	2.588(3)	P2-O5	$1.528(5)$	O3W ${ }^{\text {i }}$-O2W-O2W ${ }^{\text {i }}$-O3W	0.00
La-O4W	2.612(3)	P2-O6	$1.533(6)$		
			(i) $x,-y, z$		

Table S2. Hydrogen bonds in the structures 1-4

D-H \cdots A	D-H [${ }_{\text {A }}$]	H $\cdots \mathrm{A}$ [\AA]	D $\cdots \mathbf{A}[\AA]$	D-H \cdots A [$\left.{ }^{\circ}\right]$
NDP(1,4)hydr (1)				
O2-H2O $\cdots{ }^{\text {O }}{ }^{\text {i }}$	0.84(2)	1.73(2)	2.564(2)	168(3)
O3-H3O-. $\mathrm{Ol}^{\text {ii }}$	0.70(2)	1.89(2)	2.577(2)	170(3)
O5-H5O‥-O4 $4^{\text {ii }}$	0.79(2)	1.77(2)	2.5550(19)	169(3)
O6-H6O \cdots O7 $7^{\text {iii }}$	0.83(2)	1.75(3)	2.581(2)	177(3)
O7-H71 \cdots O7 ${ }^{\text {iv }}$	0.89(3)	1.94(3)	2.8303(18)	172(2)
O7-H72 \cdots O	0.77(2)	1.98(3)	$2.735(2)$	168(3)
O8-H81 $\cdots \mathrm{O}^{\text {v }}$	0.84(2)	1.89(3)	2.721(2)	175(3)
O8-H82 $\cdots \mathrm{O}^{\text {v }}$	0.88(3)	1.98 (3)	2.8519(18)	173(2)
C2-H2 \cdots O3	0.93	2.47	2.923(3)	110
C3-H3 \cdots O5	0.93	2.48	2.925(3)	110
$\text { (i) } \mathrm{x}, 0.5-\mathrm{y},-0.5+\mathrm{z} \text {; (ii) } \mathrm{x},-1+\mathrm{y} \text {, } \mathrm{z} \text {; (iii) } \begin{gathered} 1-\mathrm{x}, 1-\mathrm{y},-\mathrm{z} \text {; (iv) } 1-\mathrm{x},-0.5+\mathrm{y}, 0.5-\mathrm{z} \text {; (v) }-\mathrm{x},-0.5+\mathrm{y} \text {, } \\ 0.5-\mathrm{z} \end{gathered}$				

NDP(1,4C)hydr (2a)				
O2-H2O $\cdots 4^{\text {i }}$	0.87(2)	1.63(2)	2.4942 (14)	171(2)
O3-H3O $\cdots 1 W^{\text {ii }}$	0.83(2)	1.81(2)	$2.6353(16)$	175(2)
O5-H5O‥O2W ${ }^{\text {iii }}$	0.79(2)	1.79(2)	2.5671 (16)	171(2)
O6-H6O $\cdots{ }^{\text {O }}{ }^{\text {i }}$	0.76(2)	1.83(2)	$2.5912(15)$	177(2)
O1W-H1W1 ${ }^{\text {a }}$ O $4^{\text {iv }}$	0.76(2)	2.02(2)	$2.7532(15)$	162(2)
O1W-H2W1 \cdots O1 ${ }^{v}$	0.81(2)	1.95(2)	$2.7551(15)$	176(2)
O2W-H1W2 ${ }^{\text {a }}$ O2 $2^{\text {vi }}$	0.80(2)	2.07(2)	$2.8558(16)$	172(2)
O2W-H2W2 \cdots O1W	0.88(2)	1.98(2)	2.8489(18)	169(2)
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O} 2$	0.93	2.48	2.9011(18)	108
(i) $0.5-\mathrm{x}, 0.5+\mathrm{y}, 0.5-\mathrm{z}$;$\begin{gathered} \text { (ii) } 1-\mathrm{x}, 1-\mathrm{y},-\mathrm{z} ; \text { (iii) }-0.5+\mathrm{x}, 0.5+\mathrm{y}, \mathrm{z} \text {; } \\ -0.5+\mathrm{z} \text {; (vi) } \mathrm{x},-1+\mathrm{y}, \mathrm{z} \end{gathered}$$\text { ; (iv) } 0.5-x, 0.5-y,-z \text {; (v) x, 1-y, }$				
NDP(1,4C) (2b)				
O2-H2O $\cdots{ }^{\text {O }}{ }^{\text {i }}$	0.8200	1.8100	2.582(2)	156.700
O3-H3O-. ${ }^{\text {4ii }}$	0.8200	1.9300	2.592(2)	137.200
O5-H5O $\cdots 4^{\text {iii }}$	0.8200	1.7900	$2.565(2)$	155.700
O6-H6O $\cdots \mathrm{Ol}^{\text {iv }}$	0.8200	1.7700	$2.575(2)$	166.000
C2-H2 \cdots O1	0.93	2.52	2.960(3)	109
C9-H9 \cdots O2	0.93	2.52	3.133(3)	124
(i) $-\mathrm{x},-\mathrm{y},-\mathrm{z}$; (ii) $0.5-\mathrm{x},-\mathrm{y},-0.5+\mathrm{z}$; (iii) $0.5-\mathrm{x}, 0.5+\mathrm{y}$, z; (iv) $\mathrm{x}, 0.5-\mathrm{y}, 0.5+\mathrm{z}$				
La-NDP(1,4) (3)				
O12-H12O \cdots O14 ${ }^{\text {i }}$	0.82(3)	1.65(3)	2.458(2)	168.(3)
O13-H13O $\cdots 25^{\text {ii }}$	0.82(2)	1.746 (7)	2.557(2)	170.(3)
O16-H16O \cdots O22 ${ }^{\text {ii }}$	0.82(2)	1.800(7)	2.612(2)	171.(3)
O23-H23O \cdots O3 ${ }^{\text {iii }}$	0.82(2)	1.93(2)	2.694 (3)	156.(3)
O26-H26O $\cdots{ }^{\text {O }}{ }^{\text {iii }}$	0.817(8)	$1.801(6)$	2.618(2)	177.(3)
O1W-H11W \cdots O26 ${ }^{\text {iv }}$	0.82(2)	1.958(19)	2.722(2)	154.(2)
O1W-H12W \cdots O3W	0.82(2)	2.06(2)	2.838(3)	160.(2)
O2W-H21W \cdots O16 ${ }^{\text {V }}$	0.82(2)	1.900 (15)	2.681(2)	159.(3)
O3W-H31W \cdots O14 ${ }^{\text {i }}$	0.82(2)	1.97(3)	2.788(2)	174.(4)
O3W-H32W \cdots O12 ${ }^{\text {vi }}$	0.82(2)	2.31(3)	2.991(3)	142.(3)
C12-H12 \cdots O11	0.93	2.47	2.908(3)	109
C13-H13 \cdots O15	0.93	2.54	$2.950(3)$	107
C16-H16 \cdots O14	0.93	2.55	3.228(3)	130
C22-H22 \cdots O22	0.93	2.49	2.929(2)	109
C23-H23 \cdots O25	0.93	2.48	2.928(2)	110
C26-H26 \cdots O24	0.93	2.36	3.060(2)	132
C29-H29…O23	0.93	2.53	2.116(3)	121
(i) $1-x,-y,-z$; (ii) $\mathrm{x}, 0.5-\mathrm{y},-0.5+\mathrm{z}$; (iii) (iii) -x, 0.5+y, 0.5-z; (iv) -x, -y, 1-z; (v) x, 0.5-y, 0.5+z; (vi) $1-x,-0.5+y, 0.5-z$				
La-NDP(1,4C) (4)				
O1W-H1O1 $\cdots{ }^{\text {O }}{ }^{\text {i }}$	0.819(5)	2.14(2)	2.863(3)	147.(4)
O2W-H1O2 $\cdots \mathrm{O}^{\text {i }}$	0.819(5)	1.870(7)	$2.685(2)$	174.(4)
$\mathrm{O} 2 \mathrm{~W}-\mathrm{H} 2 \mathrm{O} 2 \cdots \mathrm{O} 3^{\text {ii }}$	0.820(5)	2.038(12)	2.835(3)	164.(4)
O3W-H1O3 \cdots O2 ${ }^{\text {iii }}$	0.819(5)	2.104(9)	2.913(3)	170.(4)
O3W-H2O3 \cdots O6W ${ }^{\text {iv }}$	0.819(5)	1.971(11)	2.774(3)	166.(4)
O4W-H1O4 ${ }^{\text {a }} \mathrm{O}^{\text {iv }}$	0.821(5)	2.030(6)	2.850(2)	177.(4)
O5W-H1O5 $\cdots{ }^{\text {O }}{ }^{\text {ii }}$	0.8200	2.507(6)	2.917(3)	112.1(5)
O6-H61 $\cdots \mathrm{O}^{2}$	0.8200	1.7600	2.493(3)	147.400
O3-H31 $\cdots{ }^{\text {O }}{ }^{\text {i }}$	0.8200	1.7700	2.550(3)	158.700
O6W-H2O6 \cdots O	0.79(4)	1.98(4)	2.732(3)	159.(4)
O6W-H1O6 $\cdots{ }^{\text {O }}{ }^{\text {ii }}$	0.76(4)	1.97(5)	2.722(3)	170.(5)
C2-H2 \cdots O2	0.93	2.55	3.265(4)	134
C3-H3 \cdots O5	0.93	2.49	2.936(3)	109
(i) $0.5+\mathrm{x}, 0.5-\mathrm{y}$, z; (ii) $\mathrm{x}, \mathrm{y},-1+\mathrm{z}$; (iii) $\mathrm{x},-\mathrm{y},-1+\mathrm{z}$; (iv) $-0.5+\mathrm{x},-0.5+\mathrm{y}, \mathrm{z}$				

Table S3. Crystal data and structure refinement for crystals 1-4

	Symbol of the structure				
	NDP(1,4)hydr (1)	NDP(1,4C)hydr (2a)	NDP(1,4C) (2b)	La-NDP(1,4) (3)	La-NDP(1,4C) (4)
empirical formula	$\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{8} \mathrm{P}_{2}$	$\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{8} \mathrm{P}_{2}$	$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{6} \mathrm{P}_{2}$	$\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{LaO}_{15} \mathrm{O}_{4}$	$\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{LaO}_{21} \mathrm{P}_{4}$
formula weight	324.15	338.18	302.15	766.17	902.32
crystal size $\left[\mathrm{mm}^{3}\right.$]	$0.36 \times 0.26 \times 0.21$	$0.36 \times 0.29 \times 0.24$	$0.28 \times 0.22 \times 0.16$	$0.29 \times 0.22 \times 0.19$	$0.35 \times 0.33 \times 0.12$
crystal system	monoclinic	monoclinic	orthorhombic	monoclinic	monoclinic
space group	$\mathrm{P} 21 / \mathrm{c}$	C2/c	Pbca	$\mathrm{P} 2{ }_{1} / \mathrm{c}$	Cm
$\mathbf{a}[\AA]$	23.267(4)	22.492(3)	16.2835(5)	10.614(2)	9.2113(2)
$\text { b }[\AA]$	4.886(1)	8.066(1)	7.8798(2)	12.316(3)	26.5836(5)
c [\AA]	12.329(2)	15.534(2)	19.1588(5)	20.809(4)	6.8556(10)
$\beta\left[{ }^{\circ}\right]$	93.18(1)	91.50(1)	90	104.34(3)	96.740(2)
$\mathbf{V}\left[\AA^{3}\right]$	1399.4(4)	2817.2(6)	2458.3(1)	2635.4(9)	1667.1(1)
Z	4	8	8	4	2
$\text { density (calcd) }\left[\mathbf{M g} \cdot \mathrm{m}^{-3}\right]$	1.539	1.595	1.633	1.931	1.798
$F(000)$	672	1408	1248	1520	912
$\theta \text { range }\left[{ }^{\circ}\right]$	3.31-29.48	2.98-29.29	3.06-29.44	2.94-29.39	2.99-29.40
$\text { coeff, } \mu\left[\mathrm{mm}^{-1}\right]$	0.344	0.345	0.374	1.938	1.560
T [K]	293(2)	295(2)	295(2)	295(2)	295(2)
$\lambda[\AA]$	0.71073	0.71073	0.71073	0.71073	0.71073
reflections coll., independ., obs.	$\begin{aligned} & 11572, \\ & 3577,2027 \end{aligned}$	$\begin{aligned} & 18874, \\ & 3243,2018 \end{aligned}$	$\begin{aligned} & 31447, \\ & 3610,2879 \end{aligned}$	$\begin{aligned} & 35427, \\ & 6785,5900 \end{aligned}$	$\begin{aligned} & 11315, \\ & 3506,3464 \end{aligned}$
$\mathbf{R}_{\text {int }}$	0.0446	0.0612	0.0183	0.0204	0.0189
data/parameters	3577/205	3610/215	3243/176	6785/394	3506/252
final R indices $(\mathrm{I}>2 \sigma(\mathrm{I}))$	$\begin{aligned} & \mathrm{R}_{1}=0.0441 \\ & \mathrm{wR}=0.0783 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0275, \\ & \mathrm{wR}=0.0648 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0447 \\ & \mathrm{wR}=0.0648 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0193 \\ & \mathrm{wR}=0.0277 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0173 \\ & \mathrm{wR}=0.0413 \end{aligned}$
R indices (all data)	$\begin{aligned} & \mathrm{R}_{1}=0.1113, \\ & \mathrm{wR}=0.0947 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0434, \\ & \mathrm{wR}=0.0759 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.1058 \\ & \mathrm{wR}=0.1271 \end{aligned}$	$\begin{aligned} & R_{1}=0.0483 \\ & \mathrm{wR}=0.0543 \end{aligned}$	$\begin{aligned} & \mathrm{R}_{1}=0.0181, \\ & \mathrm{wR}=0.0417 \end{aligned}$
$\text { GOF on } \mathbf{F}^{2}$	1.016	1.024	1.002	1.009	1.026
peak, hole $\left[\mathrm{e} \cdot \AA^{-3}\right]$	0.367, -0.341	0.287, -0.259	0.478, -0.453	0.806, -0.404	0.354, -0.312
CCDC number	895377	895374	895375	895373	895376

Table S4. Results of continuous shape measures analysis for lanthanum centers

	$\mathrm{SSAPR}, 1$	$\mathrm{~S}_{\text {TDD }, 2}$	$\mathrm{~S}_{\text {BTPR }, 3}$	$\Delta_{(1,2)}$	$\Delta_{(1,3)}$	$\Delta_{(2,3)}$	$\phi_{(1 \rightarrow 2)}$	$\phi_{(2 \rightarrow 1)}$	$\phi_{(1 \rightarrow 3)}$	$\phi_{(3 \rightarrow 1)}$	$\phi_{(2 \rightarrow 3)}$	$\phi_{(3 \rightarrow 2)}$
La-	0.936	1.584	1.621	31.6	48.6	53.3	57.1	74.4	64.1	84.5	76.2	77.1
NDP(1,4)	$\mathrm{S}_{\text {CSAPR, } 1}$	$\mathrm{~S}_{\text {TCTPR, 2 }}$	$\mathrm{S}_{\mathrm{JCSAPR}, 3}$	$\Delta_{(1,2)}$	$\Delta_{(1,3)}$	$\Delta_{(2,3)}$	$\varphi_{(1 \rightarrow 2)}$	$\varphi_{(2 \rightarrow 1)}$	$\varphi_{(1 \rightarrow 3)}$	$\varphi_{(3 \rightarrow 1)}$	$\varphi_{(2 \rightarrow 3)}$	$\varphi_{(3 \rightarrow 2)}$
La-	0.174	0.896	1.097	26.1	37.6	30.8	38.5	87.5	39.1	98.4	62.1	68.7
$\mathbf{N D P (1 , 4 C)}$												

S - the shape measure relative to the: SAPR - square antiprism ($\mathrm{D}_{4 \mathrm{~d}}$); TDD - triangular dodecahedron $\left(\mathrm{D}_{2 \mathrm{~d}}\right)$; BTPR - biaugmented trigonal prism ($\mathrm{C}_{2 \mathrm{v}}$); JCSAPR - capped square antiprism J10 ($\mathrm{C}_{4 \mathrm{v}}$); CSAPR - spherical capped square antiprism ($\mathrm{C}_{4 \mathrm{v}}$); TCTPR - spherical tricapped trigonal prism ($\mathrm{D}_{3 \mathrm{~h}}$) $\Delta_{(1,2)}$ - the deviation from the shape $1 \rightarrow 2$ interconversion path; $\varphi_{(1 \rightarrow 2)}$ - generalized interconversion coordinates (the sum $\varphi_{(1 \rightarrow 2)}+\varphi_{(2 \rightarrow 1)}$ is greater than 100% due to non-zero value of $\Delta_{(1,2)}$)

Scheme S1. Description of the naphthalene aromatic system. (Cg) - ring centroid, (A) - a distance between ring centroids, (B) - a distance between molecular planes, (C) - slippage, (α) - an offset shift angle

Figure S1. Asymmetric unit of NDP(1,4C). Displacement ellipsoids are drawn at the 50% probability level

Figure S2. Naphthalene rings arrangement in organic layers in the structure a) NDP(1,4)hydr (1), b) $\operatorname{NDP}(1,4 \mathrm{C})$ hydr (2a), c) $\operatorname{NDP}(1,4 \mathrm{C})(\mathbf{2 b})$, d) La-NDP(1,4)(3) - uniform color of the rings within coordination layer, e) La-NDP(1,4C) (4)

Figure S3. Asymmetric unit of La-NDP(1,4). Displacement ellipsoids are drawn at the 50% probability level

Figure S4. Asymmetric unit of La-NDP(1,4C). Displacement ellipsoids are drawn at the 50% probability level

Spectroscopic analysis

${ }^{1} H,{ }_{3}^{31} P,{ }^{13} \mathrm{C}$ NMR spectra of phosphonic acids (1 and 2).
In the case of symmetrically disubstituted $\mathrm{H}_{4} \mathrm{NDP}(1,4)(\mathbf{1})$, there is a minimum number of ${ }^{1} \mathrm{H}$ NMR signals from aromatic hydrogen atoms. Apart from this, ${ }^{1} \mathrm{H}_{\mathrm{Ar}}{ }^{1} \mathrm{H}_{\mathrm{Ar}}$ and ${ }^{1} \mathrm{H}_{\mathrm{Ar}^{-}}{ }^{31} \mathrm{P}$ couplings complicate the spectrum. In $\mathrm{H}_{4} \mathrm{NDP}(1,4 \mathrm{C})$ (2) spectrum, it is even more apparent. In this case, there is also a characteristic signal from the methylene bridge. It is doublet with clearly marked coupling constant, ${ }^{2} J_{\mathrm{H}-\mathrm{P}}$ equals $\sim 22 \mathrm{~Hz}$. Depending on an NMR solvent and pH , there can be also very broad signal with various chemical shift from protons of the phosphonic group.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra are simple. There is one singlet for symmetrical ligand and two doublets for asymmetrical one with ${ }^{31} \mathrm{P}-{ }^{31} \mathrm{P}$ coupling through six bonds, ${ }^{6} J_{\text {P-P }}$ equals about 5 Hz . Signals of phosphorous atoms connected directly to the aromatic rings are upfield shifted.
${ }^{13} \mathrm{C}$ NMR spectra are more complex due to the ${ }^{13} \mathrm{C}-{ }^{-31} \mathrm{P}$ couplings. Signals are usually doublets or doublets of doublets, unless they overlap to give triplet-like signals. The most characteristic signal comes from the carbon atom connected to the phosphorous one. Obtained doublet has a large coupling constant (${ }^{1} J_{\text {C-P }}$). For aromatic carbon atoms, it is about 180 Hz (for $\mathbf{1}$ and $\mathbf{2}$) and lower, 131 Hz (for 2), in the case of aliphatic ones.

IR of phosphonic acids (1 and 2) and lanthanum phosphonates (3 and 4)

Region between 4000 and about $1500 \mathrm{~cm}^{-1}$ contains broad bands from hydroxyl groups involved in hydrogen-bond networks especially broad for free $\mathrm{H}_{4} \mathrm{NDP}(1,4)$ (1), and $\mathrm{H}_{4} \mathrm{NDP}(1,4 \mathrm{C})$ (2). Bands about $1514 \mathrm{~cm}^{-1}$ arisen due to skeleton vibrations. In 2, there are also bands from deformations of methylene bridge around $1400 \mathrm{~cm}^{-1}$. Fingerprint region comprises bands from the phosphonic group. Hence for 1 , there is $v(\mathrm{P}=\mathrm{O})$ band at $1216 \mathrm{~cm}^{-1}, v_{\mathrm{as}}\left(\mathrm{PO}_{3}\right)$ at 1109 , and $v_{\mathrm{s}}\left(\mathrm{PO}_{3}\right)$ at $1015 \mathrm{~cm}^{-1}$. For the second ligand (2) it is: 1211, 1127, and $1012 \mathrm{~cm}^{-1}$, respectively. Out-of-plane deformation C-H vibrations are located in the region $860-815 \mathrm{~cm}^{-1}$. Band centered at $760 \mathrm{~cm}^{-1}$ is attributed to P-C stretching vibration.

For coordination compounds $\mathbf{3}$ and $\mathbf{4}$, there are also visible $\delta(\mathrm{HOH})$ vibration bands of the lattice and coordination water molecules present in the region $1650-1630 \mathrm{~cm}^{-1}$ broadened by hydrogen bonding. There are also $\mathrm{La}-\mathrm{O}(\mathrm{H})$ and $\mathrm{La}-\mathrm{O}(\mathrm{P})$ stretching vibration bands located, for 2D coordination polymer, at 467 and $367 \mathrm{~cm}^{-1}$; and at 495 and $337 \mathrm{~cm}^{-1}$ for discrete complex. Spectra in $4000-400 \mathrm{~cm}^{-1}$ region for all compounds are shown in Fig. S5 and S6.

Figure S5. IR spectra of $\mathrm{H}_{4} \mathrm{NDP}(1,4)$ (black) and $\mathrm{La}-\mathrm{NDP}(1,4)$ (blue)

Figure S6. IR spectra of $\mathrm{H}_{4} \mathrm{NDP}(1,4 \mathrm{C})$ (black) and $\mathrm{La}-\mathrm{NDP}(1,4 \mathrm{C})$ (blue)

[^0]: * (M.J.B.) michal.bialek@chem.uni.wroc.pl
 * (J.Z.) jerzy.zon@pwr.wroc.pl

[^1]: ${ }^{1}$ O. Cakmak, I. Demirtas, H. T. Balaydin, Tetrahedron 2002, 133, 20048-20051

[^2]: ${ }^{2}$ a) M. C. Carreno, R. Hernandez-Sanchez, J. Mahugo, A. Urbano, J. Org. Chem. 1999, 64, 1387-1390; b) G. Yang, C. Shen, L. Zhang, W. Zhang, Tetrahedron Lett. 2011, 52, 5032-5035

[^3]: ${ }^{3}$ P. Gans, A. Sabatini, A. Vacca, J. Chem. Soc., Dalton Trans. 1985, 1195-1200

