Supporting Information

Assembly between Various Molecular-building-blocks for Network Diversity of Zinc-1,3,5-benzenetricarboxylate Frameworks

Hui Yang^{*a,b*}, Hai-Xia Zhang^{*a*}, Duan-Chuan Hou^{*a*}, Tie-Hu Li^{*b*} and Jian Zhang^{*a*}

 ^aState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
^b School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, China 710072

Email: zhj@fjirsm.ac.cn

Figure S1. The coordination environment of the Zn atoms and btc ligands in **1** (solvent molecules are shown as large blue spheres for clarity).

Figure S2. View 3D structure of **1** along *b* axis.

Figure S3. The coordination environment of the Zn atoms and btc ligands in 2 (solvent molecules are shown as large blue spheres for clarity).

Figure S4. The independent unit of **3** (solvent molecules are shown as large blue spheres for clarity).

Figure S5. The coordination environment of the Zn atoms and btc ligands in **3** (solvent molecules are shown as large blue spheres for clarity).

Figure S6. The crystal structures of 3: (a) The dinuclear paddlewheel and two mpyrol solvent molecules coordinated dinuclear MBBs alternately arranged in 3; (b) The dinuclear paddlewheel MBBs; (c) Two mpyrol solvent molecules coordinated dinuclear MBBs; (d) the 3D framework of 3 (solvent molecules are shown as large blue spheres for clarity).

Figure S7. The independent unit of **4** (solvent molecules are shown as large blue spheres for clarity).

Figure S8. The coordination environment of the Zn atoms and btc ligands in **4** (solvent molecules are shown as large blue spheres for clarity).

MBB	compound name	author	reference
$Zn_4O(COO)_6$	MOF-5	O.M. Yaghi	Nature, 1999, 402, 276
paddle-wheel	USF-3	M. J. Zaworotko	Angew. Chem. Int. Ed., 2005, 44, 2877
$Zn_2(COO)_4$			
irregular		S. L. Qiu	Inorg. Chem., 2006, 45, 3582
$Zn_2(COO)_4$			
$Zn_2(COO)_6$	MOF-37	O.M. Yaghi	J. Am. Chem. Soc., 2001, 123, 8239
$Zn_3(\mu_3\text{-}O)(COO)_6$	MOF-38&39	O.M. Yaghi	J. Am. Chem. Soc., 2001, 123, 8239
Zn ₃ (µ ₃ -OH)(COO)	6	Z. M. Su	CrystEngComm, 2012, 14, 5596
$Zn_2(COO)_3$		Z. M. Su	CrystEngComm, 2012, 14, 5596

Table S1. A Summary of the already known zinc MBBs.