Electronic supplementary information (ESI)

Coordination polymers with mixed 4,4'-bipyridine-2,2',6, 6'-tetracarboxylate and imidazole-containing ligands: synthesis, structure and property[†]

Min Chen,^{*a*} Zheng-Shuai Bai,^{*a*} Qing Liu,^{*a*} Taka-aki Okamura,^{*b*} Yi Lu^{*a*} and Wei-Yin Sun*^{*a*}

^{*a*} Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093, China. E-mail: <u>sunwy@nju.edu.cn</u>; Fax: +86-25-83314502

^b Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

Table S1. Selected bond lengths (Å) and angles (deg) for complexes 1 - 3.^a

Complex 1					
Mn(1)–O(17)	2.156(6)	Mn(1)–O(18)	2.171(6)		
Mn(1)–N(11)	2.243(7)	Mn(1)–O(19)	2.258(7)		
Mn(1)–O(3)	2.311(5)	Mn(1)-O(5)#1	2.317(6)		
Mn(1)–O(1)	2.436(6)	Mn(2)–O(20)	2.193(8)		
Mn(2)–O(26)	2.204(8)	Mn(2)–N(112)	2.222(8)		
Mn(2)–N(21)	2.265(7)	Mn(2)–O(3)#2	2.333(5)		
Mn(2)–O(5)	2.354(6)	Mn(2)–O(7)	2.470(6)		
Mn(3)–O(21)	2.182(6)	Mn(3)–N(132)	2.218(8)		
Mn(3)–N(31)	2.262(6)	Mn(3)–O(9)	2.271(8)		
Mn(3)–O(7)#3	2.320(5)	Mn(3)–O(11)	2.337(6)		

Mn(3)–O(8)#3	2.487(6)	Mn(4)–O(22)	2.187(6)
Mn(4)-N(152)#4	2.209(8)	Mn(4)–N(41)	2.264(7)
Mn(4)–O(13)	2.277(6)	Mn(4)–O(1)#5	2.371(6)
Mn(4)–O(15)	2.383(6)	Mn(4)–O(2)#5	2.421(6)
O(17)-Mn(1)-O(18)	99.5(2)	O(17)-Mn(1)-N(11)	97.8(2)
O(18)-Mn(1)-N(11)	137.8(2)	O(17)-Mn(1)-O(19)	178.2(3)
N(11)-Mn(1)-O(19)	83.9(3)	O(18)-Mn(1)-O(19)	78.7(3)
O(18)–Mn(1)–O(3)	144.7(2)	O(17)-Mn(1)-O(3)	95.2(2)
O(19)-Mn(1)-O(3)	86.2(3)	N(11)-Mn(1)-O(3)	70.4(2)
O(18)-Mn(1)-O(5)#1	79.5(2)	O(17)-Mn(1)-O(5)#1	84.0(2)
O(19)-Mn(1)-O(5)#1	95.3(2)	N(11)-Mn(1)-O(5)#1	140.7(2)
O(17)-Mn(1)-O(1)	88.9(2)	O(3)-Mn(1)-O(5)#1	70.3(2)
N(11)Mn(1)O(1)	67.2(2)	O(18)-Mn(1)-O(1)	74.9(2)
O(3)–Mn(1)–O(1)	137.6(2)	O(19)–Mn(1)–O(1)	91.0(3)
O(20)-Mn(2)-O(26)	100.2(4)	O(5)#1-Mn(1)-O(1)	151.8(2)
O(26)-Mn(2)-N(112)	175.1(4)	O(20)-Mn(2)-N(112)	83.4(3)
O(26)-Mn(2)-N(21)	94.7(3)	O(20)-Mn(2)-N(21)	139.3(3)
O(20)-Mn(2)-O(3)#2	80.8(3)	N(112)-Mn(2)-N(21)	84.4(3)
N(112)-Mn(2)-O(3)#2	95.7(3)	O(26)-Mn(2)-O(3)#2	81.9(3)
O(20)–Mn(2)–O(5)	146.6(3)	N(21)-Mn(2)-O(3)#2	139.1(2)
N(112)-Mn(2)-O(5)	84.9(2)	O(26)–Mn(2)–O(5)	90.3(4)
O(3)#2-Mn(2)-O(5)	69.3(2)	N(21)-Mn(2)-O(5)	70.0(2)
O(26)-Mn(2)-O(7)	91.3(3)	O(20)-Mn(2)-O(7)	73.9(2)
N(21)Mn(2)O(7)	68.0(2)	N(112)-Mn(2)-O(7)	92.7(2)
O(5)-Mn(2)-O(7)	138.0(2)	O(3)#2-Mn(2)-O(7)	152.2(2)
O(21)-Mn(3)-N(31)	93.6(2)	O(21)-Mn(3)-N(132)	165.4(3)
O(21)-Mn(3)-O(9)	94.6(3)	N(132)-Mn(3)-N(31)	88.9(3)
N(31)-Mn(3)-O(9)	69.9(2)	N(132)-Mn(3)-O(9)	99.8(3)
N(132)-Mn(3)-O(7)#3	95.3(2)	O(21)-Mn(3)-O(7)#3	89.7(2)
O(9)-Mn(3)-O(7)#3	80.3(2)	N(31)-Mn(3)-O(7)#3	150.2(2)
N(132)-Mn(3)-O(11)	84.9(2)	O(21)-Mn(3)-O(11)	82.7(2)
O(9)-Mn(3)-O(11)	137.5(2)	N(31)-Mn(3)-O(11)	68.0(2)
O(21)-Mn(3)-O(8)#3	86.5(2)	O(7)#3-Mn(3)-O(11)	141.7(2)

N(31)-Mn(3)-O(8)#3 154	4.8(2) N(1	32)-Mn(3)-O(8)#3	85.3(3)
O(7)#3–Mn(3)–O(8)#3 54.	9(2) O(9	9)-Mn(3)-O(8)#3	135.2(2)
O(22)–Mn(4)–N(152)#4 177	7.9(3) O(1	1)-Mn(3)-O(8)#3	87.1(2)
N(152)#4–Mn(4)–N(41) 88.	5(3) O(2	22)-Mn(4)-N(41)	90.8(2)
N(152)#4-Mn(4)-O(13) 92.	9(3) O(2	22)-Mn(4)-O(13)	85.0(2)
O(22)–Mn(4)–O(1)#5 91.	6(2) N(4	41)-Mn(4)-O(13)	71.2(2)
N(41)-Mn(4)-O(1)#5 145	5.1(2) N(1	52)#4-Mn(4)-O(1)#5	90.1(3)
O(22)–Mn(4)–O(15) 90.	6(2) O(1	3)-Mn(4)-O(1)#5	143.6(2)
N(41)–Mn(4)–O(15) 67.	8(2) N(1	52)#4Mn(4)O(15)	91.0(2)
O(1)#5–Mn(4)–O(15) 77.	4(2) O(1	3)-Mn(4)-O(15)	138.7(2)
N(152)#4-Mn(4)-O(2)#5 91.	9(2) O(2	22)-Mn(4)-O(2)#5	88.1(2)
O(13)-Mn(4)-O(2)#5 88.	1(2) N(4	41)–Mn(4)–O(2)#5	159.3(2)
O(15)-Mn(4)-O(2)#5 132	2.8(2) O(1)#5-Mn(4)-O(2)#5	55.5(2)
	Complex	2	
Ni(1)–N(81) 1.9	88(2) Ni(1)–N(112)	2.057(3)
Ni(1)–N(12) 2.0	78(3) Ni(1)–N(32)#1	2.090(3)
Ni(1)–O(5) 2.1	28(2) Ni(1)–O(7)	2.206(2)
Ni(2)–N(71)#2 1.9	77(3) Ni(2	2)–N(52)	2.025(3)
Ni(2)–N(132)#3 2.0	93(3) Ni(2	2)–N(152)	2.114(3)
Ni(2)–O(1)#2 2.1	51(3) Ni(2	2)–O(3)#2	2.184(2)
N(81)–Ni(1)–N(112) 175	5.2(1) N(8	31)–Ni(1)–N(12)	92.5(1)
N(112)–Ni(1)–N(12) 91.	9(1) N(8	31)–Ni(1)–N(32)#1	89.0(1)
N(112)–Ni(1)–N(32)#1 86.	8(1) N(1	2)-Ni(1)-N(32)#1	174.1(1)
N(81)–Ni(1)–O(5) 78.	0(1) N(1	12)–Ni(1)–O(5)	99.8(1)
N(12)–Ni(1)–O(5) 93.	1(1) N(3	32)#1-Ni(1)-O(5)	92.9(1)
N(81)–Ni(1)–O(7) 76.	1(1) N(1	12)–Ni(1)–O(7)	106.0(1)
N(12)–Ni(1)–O(7) 88.	2(1) N(3	32)#1-Ni(1)-O(7)	86.6(1)
O(5)-Ni(1)-O(7) 154	4.1(1) N(7	71)#2-Ni(2)-N(52)	176.1(1)
N(71)#2-Ni(2)-N(132)#3 90.	3(1) N(5	52)–Ni(2)–N(132)#3	92.6(1)
N(71)#2-Ni(2)-N(132)#3 90. N(71)#2-Ni(2)-N(152) 89.	3(1) N(5 8(1) N(5	52)–Ni(2)–N(132)#3 52)–Ni(2)–N(152)	92.6(1) 87.5(1)
N(71)#2-Ni(2)-N(132)#3 90. N(71)#2-Ni(2)-N(152) 89. N(132)#3-Ni(2)-N(152) 175	3(1) N(5 8(1) N(5 5.7(1) N(7	52)–Ni(2)–N(132)#3 52)–Ni(2)–N(152) 71)#2–Ni(2)–O(1)#2	92.6(1) 87.5(1) 77.7(1)
N(71)#2-Ni(2)-N(132)#3 90. N(71)#2-Ni(2)-N(152) 89. N(132)#3-Ni(2)-N(152) 175 N(52)-Ni(2)-O(1)#2 99.	3(1) N(5 8(1) N(5 5.7(1) N(7 7(1) N(1	52)–Ni(2)–N(132)#3 52)–Ni(2)–N(152) 71)#2–Ni(2)–O(1)#2 132)#3–Ni(2)–O(1)#2	92.6(1) 87.5(1) 77.7(1) 93.0(1)

N(52)-Ni(2)-O(3)#2	105.3(1)	N(132)#3-Ni(2)-O(3)#2	88.0(1)		
N(152)-Ni(2)-O(3)#2	87.6(1)	O(1)#2-Ni(2)-O(3)#2	154.9(1)		
Complex 3					
Co(1)-N(11)#1	2.053(3)	Co(1)–N(212)	2.091(3)		
Co(1)-N(132)#2	2.118(3)	Co(1)–N(112)	2.140(3)		
Co(1)-O(5)#1	2.144(3)	Co(1)–O(7)#1	2.213(3)		
Co(2)–N(21)	2.028(3)	Co(2)–N(152)#2	2.051(3)		
Co(2)–N(252)#3	2.134(4)	Co(2)–N(232)	2.154(4)		
Co(2)–O(3)	2.180(3)	Co(2)–O(1)	2.208(3)		
N(11)#1-Co(1)-N(212)	174.3(1)	N(11)#1-Co(1)-N(132)#2	92.4(1)		
N(212)-Co(1)-N(132)#2	92.4(1)	N(11)#1-Co(1)-N(112)	88.6(1)		
N(212)-Co(1)-N(112)	87.1(1)	N(132)#2-Co(1)-N(112)	173.9(1)		
N(11)#1-Co(1)-O(5)#1	75.8(1)	N(212)-Co(1)-O(5)#1	100.9(1)		
N(132)#2-Co(1)-O(5)#1	92.9(1)	N(112)-Co(1)-O(5)#1	93.2(1)		
N(11)#1-Co(1)-O(7)#1	74.5(1)	N(212)-Co(1)-O(7)#1	108.7(1)		
N(132)#2-Co(1)-O(7)#1	88.4(1)	N(112)-Co(1)-O(7)#1	86.1(1)		
O(5)#1-Co(1)-O(7)#1	150.3(1)	N(21)-Co(2)-N(152)#2	174.9(1)		
N(21)-Co(2)-N(252)#3	89.4(1)	N(152)#2-Co(2)-N(252)#3	94.1(1)		
N(21)-Co(2)-N(232)	89.2(1)	N(152)#2-Co(2)-N(232)	87.7(1)		
N(252)#3-Co(2)-N(232)	175.0(1)	N(21)-Co(2)-O(3)	76.0(1)		
N(152)#2-Co(2)-O(3)	100.1(1)	N(252)#3-Co(2)-O(3)	93.9(1)		
N(232)-Co(2)-O(3)	90.4(2)	N(21)-Co(2)-O(1)	75.8(1)		
N(152)#2-Co(2)-O(1)	108.0(1)	N(252)#3-Co(2)-O(1)	87.5(1)		
N(232)-Co(2)-O(1)	87.5(1)	O(3)–Co(2)–O(1)	151.7(1)		

Symmetry transformations used to generate equivalent atoms: #1 x, y, z+1; #2 x, y, z-1; #3 -x+1, y-1/2, -z+1; #4 -x+1, y+1/2, -z+1; #5 -x + 1, y + 1/2, -z + 2 for 1; #1 -x + 1, y-1/2, -z + 1/2; #2 x, -y + 1/2, z- 1/2; #3 x+1, y, z for 2;#1 x, -y+1/2, z-1/2; #2 -x+1, y+1/2, -z+1/2; #3 x-1, y, z for 3.

Fig. S1. The PXRD patterns of complexes 1-3: a – simulated; b – as-synthesized.

Fig. S2. The TGA curves of complexes 1 - 3.

Fig. S3. Temperature dependence of $1/\chi_M$ for **1** in the range of ca. 14 - 300 K. The solid line shows the Curie–Weiss fitting.

Fig. S4. Comparison of the PXRD patterns of 2 evacuated at different temperatures.

Fig. S5. N₂ adsorption isotherms for complex **2** at 77 K: filled shape, adsorption; open shape, desorption.