	1		
Pb1–N1	2.668(4)	Pb1–N2	2.639(4)
Pb1–O1	2.403(3)	Pb1–O2	2.680(3)
Pb1–O3A	2.396(3)	Pb1–O1W	2.976(5)
C39–C40	1.215(8)		
O1–Pb1–O1W	94.58(12)	O1–Pb1–N1	76.51(11
O1–Pb1–O3A	84.74(12)	O2–Pb1–N1	115.30(1
O1W–Pb1–N1	79.77(12)	O1W-Pb1-O2	71.16(11
O2–Pb1–O3A	77.48(10)	O2-Pb1-N2	125.09(1
N1–Pb1–N2	61.38(10)	O1-Pb1-O2	50.95(10
N1–Pb1–O3A	138.19(12)	O1W-Pb1-N2	141.14(1
O1–Pb1–N2	78.31(11)	O1W-Pb1-O3A	139.47(1
Symmetry code for 1:	A) $-x - 2, -y + 1$, -z + 1.	
	2		
Pb(1)–O(1)	2.440(5)	Pb(1)–N(1)	2.721(6)
Pb(1)–O(2)	2.492(6)	Pb(1)–N(2)	2.666(6)
Pb(1)–O(3)	2.688(7)	Pb(1)–N(4)	2.811(7)
Pb(1)–O(5)	3.003(10)	Pb(1)–N(5)	2.826(6)
O(1)–Pb(1)–O(2)	52.53(19)	O(1)-Pb(1)-N(4)	93.09(19
O(1)–Pb(1)–N(2)	74.18(18)	O(2)–Pb(1)–N(4)	73.10(19
O(2)–Pb(1)–N(2)	74.04(19)	N(2)-Pb(1)-N(4)	145.76(1
O(1)–Pb(1)–O(3)	76.6(2)	O(3)–Pb(1)–N(4)	133.4(2)
O(2)–Pb(1)–O(3)	125.8(2)	N(1)-Pb(1)-N(4)	98.59(19
N(2)–Pb(1)–O(3)	75.39(19)	O(1)-Pb(1)-N(5)	77.58(16
O(1)–Pb(1)–N(1)	113.95(17)	O(2)–Pb(1)–N(5)	106.02(1
O(2)–Pb(1)–N(1)	69.6(2)	N(2)-Pb(1)-N(5)	143.45(1
N(2)–Pb(1)–N(1)	60.64(19)	O(3)–Pb(1)–N(5)	75.9(2)
O(3)–Pb(1)–N(1)	127.4(2)	N(1)-Pb(1)-N(5)	154.99(1
N(4)–Pb(1)–N(5)	57.51(17)	O(3)–Pb(1)–O(5)	42.8(3)
O(1)–Pb(1)–O(5)	114.4(3)	N(1)-Pb(1)-O(5)	92.5(3)
O(2)–Pb(1)–O(5)	143.3(3)	N(4)-Pb(1)-O(5)	143.0(3)
N(2)-Pb(1)-O(5)	69.3(2)	N(5)–Pb(1)–O(5)	102.9(2)
	3		
Pb(1)–N(1)	2.611(6)	Pb(1)–N(2)	2.692(7)
Pb(1)–O(1)	2.625(7)	Pb(1)–O(2)	2.551(8)
Pb(1)–O(3)	2.553(7)	Pb(1)–O(4)	2.349(7)
Pb(1)–O(8)C	3.030(94)		
Pb(2)–N(3)	2.654(6)	Pb(2)–N(4)	2.577(6)
Pb(2)–O(5)A	2.376(8)	Pb(2)–O(8)	2.506(8)

Table S1. Selected bond lengths (Å) and angles (°) for complexes 1-3.

Pb(2)–O(3)D	2.8477(70)	Pb(2)-O(6)A	2.623(11)				
Pb(2)–O(7)	2.952(78)	Pb(2)–O(7)E	3.061(76)				
Pb(3)–N(7)	2.752(6)	Pb(3)–N(8)	2.849(6)				
Pb(3)–O(10)	2.462(6)	Pb(3)–O(9)	2.568(6)				
Pb(3)–O(12)B	2.602(6)	Pb(3)–O(11)B	2.412(7)				
O(4)–Pb(1)–O(2)	82.4(3)	O(4)–Pb(1)–O(3)	53.5(2)				
O(2)–Pb(1)–O(3)	77.2(2)	O(4)–Pb(1)–N(1)	76.7(2)				
O(2)–Pb(1)–N(1)	127.1(2)	O(3)–Pb(1)–N(1)	122.40(19)				
O(4)–Pb(1)–O(1)	87.0(3)	O(2)–Pb(1)–O(1)	50.1(2)				
O(3)–Pb(1)–O(1)	118.8(3)	N(1)–Pb(1)–O(1)	80.4(2)				
O(4)–Pb(1)–N(2)	74.4(2)	O(2)-Pb(1)-N(2)	153.2(3)				
O(3)–Pb(1)–N(2)	78.3(2)	N(1)-Pb(1)-N(2)	60.42(19)				
O(1)–Pb(1)–N(2)	139.3(2)	O(5)A-Pb(2)-O(8)	95.4(4)				
O(5)A-Pb(2)-N(4)	72.3(3)	O(8)-Pb(2)-N(4)	75.5(2)				
O(5)A-Pb(2)-O(6)A	50.5(4)	O(8)-Pb(2)-O(6)A	77.9(4)				
N(4)-Pb(2)-O(6)A	112.9(4)	O(5)A-Pb(2)-N(3)	85.8(3)				
O(8)-Pb(2)-N(3)	134.6(2)	N(4)-Pb(2)-N(3)	61.7(2)				
O(6)A-Pb(2)-N(3)	131.1(4)	O(11)B–Pb(3)–O(10)	83.0(2)				
O(11)B–Pb(3)–O(9)	78.3(2)	O(10)-Pb(3)-O(9)	51.9(2)				
O(11)B–Pb(3)–O(12)B	51.2(2)	O(10)-Pb(3)-O(12)B	123.2(2)				
O(9)-Pb(3)-O(12)B	83.6(2)	O(11)B–Pb(3)–N(7)	84.5(2)				
O(10)–Pb(3)–N(7)	74.03(19)	O(9)–Pb(3)–N(7)	124.55(19)				
O(12)B–Pb(3)–N(7)	123.43(18)						
Symmetry code for 3 : A) $-x - 1$, $-y + 1$, $-z + 2$; B) $-x$, $-y$, $-z + 2$; C) $-x - 1$,							

-y, -z + 2; D) x, y, z - 1; E) -x - 1, -y, -z + 1.

Table S2. Hydrogen–bonding geometry (Å, °) for complex 1.

D–H···A	D–H…A	D–D…A	D–H…A
O1W–H1WB…O3w	2.07	2.856(6)	154
O2W-H2WA···O4W(A)	1.92	2.764(5)	171
O2W-H2WB····O4(B)	1.91	2.761(5)	176
O3W–H3WA…O2W	1.87	2.708(5)	167
O3W-H3WB···O1(C)	2.13	2.947(5)	160
O4W–H4WB…O1(C)	2.16	2.922(5)	150

Symmetry operations: A) -x + 1, y - 1/2, -z + 1/2; B) x + 2, -y + 1/2, z - 1/2; C) x + 1, y, z; D) x + 2, y, z.

Analysis of Short Ring-Interactions with Cg-Cg Distances

Cg(I) = Plane number I (= ring number in () above)

Alpha = Dihedral Angle between Planes I and J (°)

Beta = Angle Cg(I)-->Cg(J) or Cg(I)-->Me vector and normal to plane $I(^{\circ})$

Gamma = Angle Cg(I)-->Cg(J) vector and normal to plane J ($^{\circ}$)

Cg-Cg = Distance between ring Centroids (Å)

 $CgI_Perp = Perpendicular distance of Cg(I) on ring J (Å)$

 $CgJ_Perp = Perpendicular distance of Cg(J) on ring I (Å)$

Slippage = Distance between Cg(I) and Perpendicular Projection of Cg(J) on Ring I (Å).

P,Q,R,S = J-Plane Parameters for Carth. Coord. (Xo, Yo, Zo)

4	
_	

Cg1 = N1-C1-C2-C3-C4-C12

Cg2 = N2-C10-C9-C8-C7-C11

Cg3 = N3-C17-C16-C15-C14-C18

Cg4 = N4-C19-C23-C22-C21-C20

Cg5 = N5-C6-C5-N6-C13-C24

Cg6 = C4-C5-C6-C7-C11-C12

Cg7 = C13-C14-C18-C19-C23-C24.

Cg(I)- $Cg(J)$	Cg-Cg	Transformed	J-Plane	P,Q,R,S	Alpha	Beta	Gamma	CgI_Perp	CgJ_Perp	Slippage
Cg1-Cg7A	3.784(3)	-0.8498	-0.2835	0.4444	2.6878	1.9(2)	28.39	27.95	3.3423(19)	3.3287(19)
Cg4-Cg6B	3.706(3)	-0.8347	-0.2938	0.4657	9.0948	1.8(2)	26.78	28.44	-3.259(2)	-3.3091(19)
Cg5-Cg6A	3.647(3)	-0.8347	-0.2938	0.4657	2.5081	0.6(2)	22.7	22.17	3.3774(18)	3.3648(19)
Cg5-Cg7B	3.595(3)	-0.8498	-0.2835	0.4444	9.3934	1.0(2)	24.41	23.75	-3.2902(18)	-3.2733(19)
Cg5-Cg5A	3.538(3)	-0.8403	-0.291	0.4574	2.5923	0	17.92	17.92	3.3664(18)	3.3666(18)
Cg4-Cg1A	3.539(3)	-0.8371	-0.2747	0.473	2.6893	2.8(2)	18.06	18.86	3.349(2)	3.3644(19)
Cg3-Cg2A	3.537(3)	-0.8241	-0.324	0.4646	2.2048	5.9(2)	13.64	18.9	3.346(2)	3.436(2)
Cg6-Cg7A	3.527(3)	-0.8498	-0.2835	0.4444	2.6878	1.6(2)	18.53	16.92	3.3744(19)	3.3443(19)
Cg4-Cg5B	3.428(3)	-0.8403	-0.291	0.4574	9.2231	1.5(2)	17.19	17.36	-3.273(2)	-3.2756(18)
A: $-x - 2$, $-y + 1$, $-z$; B: $-x - 3$, $1 - y$, $-z$.										

2

Cg1 = N1-C6-C14-C15-C16-C17

Cg3 = N3-C12-C13-N3a-C12a-C13a

Cg4 = N4-C18-C28-C29-C30-C31

Cg5 = N5-C19-C23-C22-C21-C20

Cg6 = N6-C24-C27-N7-C26-C25

Cg7 = N8-C33-C32-C36-C35-C34

Cg9 = C6-C7-C11-C12-C13-C14

Cg10 = C18-C19-C23-C24-C27-C28

Cg11 = C25-C26-C32-C33-C37-C41

Cg(I)- $Cg(J)$	Cg-Cg	Transformed	J-Plane	P,Q,R,S	Alpha	Beta	Gamma	CgI_Perp	CgJ_Perp	Slippage
Cg1-Cg5A	3.606(4)	-0.9664	0.2567	0.0144	-1.2544	2.27	23.62	21.37	3.359	3.304
Cg1-Cg10A	3.633(4)	0.9626	-0.2585	0.081	-1.2275	4.53	23.95	21.14	3.388	3.319
Cg3-Cg6B	3.715(4)	-0.963	0.264	-0.0542	-5.4782	3.37	22.84	24.18	3.389	3.424
Cg3-Cg6A	3.716(4)	0.963	-0.264	0.0542	-1.3011	3.37	22.84	24.18	3.39	3.424
Cg4-Cg11D	3.723(4)	-0.967	-0.2494	-0.052	-2.8429	6.17	20.92	14.76	3.601	3.478
Cg5-Cg7D	3.772(5)	-0.9649	-0.2538	-0.0673	-2.9467	3.03	26.57	23.63	3.455	3.374
Cg6-Cg6D	3.722(4)	-0.963	-0.264	-0.0542	-2.8603	0	23.34	23.34	3.418	3.418
Cg6-Cg9C	3.576(4)	0.9611	0.276	0.0054	9.2987	2.88	14.49	16.73	3.424	3.462
Cg6-Cg10D	3.884(4)	-0.9626	-0.2585	-0.081	-3.0426	1.56	27.48	27.41	3.448	3.446
Cg10-Cg11D	3.746(4)	-0.967	-0.2494	-0.052	-2.8429	1.76	22.1	23.53	3.434	3.471
A: $x - 1/2$, $-y + 1/2$, $z - 1/2$; B: $-x + 3/2$, $y + 1/2$, $-z + 1/2$; C: $x + 1/2$, $-y + 1/2$, $z + 1/2$; D: $-x + 1$, $-y$, $-z + 1$.										

_

Cg2 = N(2)-C(10)-C(9)-C(8)-C(7)-C(11)
Cg4 = N(4)-C(22)-C(21)-C(20)-C(19)-C(23)
Cg5 = N(5)-C(5)-C(6)-N(6)-C(18)-C(17)
Cg7 = C(16)-C(17)-C(18)-C(19)-C(23)-C(24)
Cg8 = N(7)-C(25)-C(26)-C(27)-C(28)-C(36)
Cg9 = N(8)-C(34)-C(33)-C(32)-C(31)-C(35)
Cg10 = N(9)-C(37)-C(38)-C(39)-C(40)-C(48)
Cg13 = C(28)-C(29)-C(30)-C(31)-C(35)-C(36)
Cg14 = C(40)-C(41)-C(42)-C(43)-C(47)-C(48)

Cg12 = N(11)-C(29)-C(30)-N(12)-C(42)-C(41)

Cg(I)-Cg(J)	Cg-Cg	Transformed	J-Plane	P,Q,R,S	Alpha	Beta	Gamma	CgI_Perp	CgJ_Perp	Slippage
Cg(4)-Cg(2)A	3.596(5)	0.2042	-0.9767	-0.0666	-1.226	1.9(4)	19.54	21.39	-3.348(3)	-3.389(3)
Cg(5)-Cg(13)B	3.500(4)	-0.157	0.9823	0.1019	8.2612	3.1(3)	11.25	13.7	-3.400(3)	3.433(3)
Cg(8)-Cg(7)C	3.545(5)	-0.2555	0.9576	0.133	2.0757	6.6(4)	19.91	14.45	3.433(3)	-3.333(3)
Cg(13)-Cg(5)C	3.501(4)	-0.2014	0.9706	0.1315	2.5861	3.1(3)	13.7	11.25	3.433(3)	-3.401(3)
Cg(4)-Cg(8)B	3.757(5)	-0.1739	0.9832	0.0562	7.7206	3.0(4)	24.54	21.63	-3.493(3)	3.418(3)
Cg(5)-Cg(12)B	3.751(4)	-0.1648	0.9803	0.1092	8.3984	2.5(3)	27.24	25	-3.399(3)	3.335(3)
Cg(2)-Cg(7)A	3.782(5)	0.2555	-0.9576	-0.133	-2.5784	4.9(4)	24.61	28.95	-3.310(3)	-3.439(3)
Cg(14)-Cg(9)D	3.503(5)	0.1408	-0.9817	-0.1285	-10.0299	1.3(4)	16.18	16.05	3.366(3)	3.364(3)
Cg(13)-Cg(14)D	3.729(4)	0.1637	-0.9785	-0.1258	-9.7067	1.4(3)	25.32	23.99	3.407(3)	3.370(3)
Cg(10)-Cg(9)D	3.627(5)	0.1408	-0.9817	-0.1285	-10.0299	3.5(4)	22.03	25.04	3.285(4)	3.362(3)
Cg(12)-Cg(12)D	3.745(4)	0.1648	-0.9803	-0.1092	-9.435	0	24.92	24.92	3.397(3)	3.397(3)
A: - <i>x</i> - 1, - <i>y</i> , - <i>z</i> + 2; B: <i>x</i> - 1, <i>y</i> , <i>z</i> ; C: <i>x</i> + 1, <i>y</i> , <i>z</i> ; D: - <i>x</i> + 1, - <i>y</i> + 1, - <i>z</i> + 2.										

3

Chart S1. The development of chelating ligands.

Figure S1. 1D staircase-like supramolecular chain derived from nano-scale metal-ring in complex 3.

Figure S2. 3D open framework with α -Po type topology network in complex 3.

(c)

Figure S3. Two kinds of 4-members nano-scale rings derived from tpphz and L^3 anions, showing two types of penetrating modes in complex 3.

Figure S5. The versatile coordination environments of Pb(II) atoms in complexes 1-3.

Figure S6. The TG curve of complex 3.