Supporting Information for

Distinct interpenetrated metal-organic frameworks constructed from crown ether-based strut analogue

Lei Liu ${ }^{\text {a }}$, Xiaojun Wang ${ }^{\text {a }}$, Quan Zhang ${ }^{\text {a }}$, Qiaowei $\mathrm{Li}^{*}{ }^{\text {b }}$ and Yanli Zhao* ${ }^{\text {ac }}$
${ }^{a}$ Division of Chemistry \& Biological Chemistry, School of Physical \& Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 Email: zhaoyanli@ntu.edu.sg
${ }^{b}$ Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, China 200433 Email: qwli@fudan.edu.cn
${ }^{c}$ School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798

1. Materials and Measurements:

All chemical reagents were commercially available and used as received unless otherwise stated, and solvents were dried or purified according to standard procedures prior to use. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker BBFO-400 spectrometer. The electronic spray ionization (ESI) mass spectra were recorded on a ThermoFinnigan LCQ quadrupole ion trap mass spectrometer. HR-MS was performed on a Waters Q-tof Premier MS spectrometer. Absorption spectra were recorded on a Shimadzu UV-3600 UV-Vis-NIR spectrophotometer. Gas sorption isotherms were obtained with Quantachrome Autosorb-iQ-MP. The samples were degassed overnight at $100^{\circ} \mathrm{C}$. Thermogravimetric analyses (TGA) were performed on a TGA 500 thermogravimetric analyzer by heating the samples at $5{ }^{\circ} \mathrm{C} \mathrm{min}$ to $600^{\circ} \mathrm{C}$ in the atmosphere of nitrogen. Single crystal X-ray diffraction data were collected on a Bruker SMART APEXII three circle diffractometer equipped with a CCD area detector and operated at 1500 W power ($50 \mathrm{kV}, 30 \mathrm{~mA}$) to generate Mo $K \alpha$ radiation ($\lambda=0.71073 \AA$). Crystals were mounted on nylon CryoLoops in a liquid N_{2} cooled stream of nitrogen. ICP-MS analysis was carried out on the Agilent 7700-Japan equipment.

2. Synthesis of BC-4 and BC-5:

Scheme S1. Synthetic routes of BC-4 and BC-5.

Synthesis of BC-4: A mixture of $6 \mathrm{a}^{\mathrm{Sl}, \mathrm{S} 2}(1.24 \mathrm{~g}, 2.6 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(2.0 \mathrm{~g}, 6.1 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}$ $(25 \mathrm{~mL})$ in 1,4-dioxane (50 mL) was bubbled with Argon for 30 min . Then, [1,1'-bis(diphenylphosphino)ferrocene]dichloropalladium(II) $(0.07 \mathrm{~g}, 0.1 \mathrm{mmol})$ and 4 (methoxycarbonyl) benzenebornic acid pinacol ester ($1.71 \mathrm{~g}, 6.5 \mathrm{mmol}$) were added to the solution and the reaction mixture was refluxed under Argon atmosphere for another 5 h . After cooling down to room temperature, the resulting mixture was filtrated and the solvents were evaporated in vacuum. The residue was dissolved in $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}(2: 1, \mathrm{v} / \mathrm{v}, 50 \mathrm{~mL})$, and KOH $(0.58 \mathrm{~g}, 10.4 \mathrm{mmol})$ was added to the solution. After stirring at room temperature for 48 h , the mixture solution was washed successively with ethyl acetate until there was no organic compound in eluate as indicated by TLC. Then, $\mathrm{HCl}(1 \mathrm{~N})$ was added to the organic solution in order to adjust the solution pH to 1 . The precipitate was collected and dried under vacuum to give BC-4 ($0.57 \mathrm{~g}, 47.5 \%$) as white solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}, \mathrm{ppm}\right): \delta 13.01$ (br, $2 \mathrm{H}), 8.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.72(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.28(\mathrm{~s}, 2 \mathrm{H}), 3.91(\mathrm{~m}, 4 \mathrm{H}), 3.63(\mathrm{~m}, 8 \mathrm{H})$;
${ }^{13}$ C-NMR (100MHz, DMSO- $\left.d_{6}, \mathrm{ppm}\right): ~ \delta 167.6,150.6,142.3,135.4,130.1 ; 129.8,129.6,126.2$, 77.4, 70.8, 70.0; ESI-MS m/z: $950.8[2 \mathrm{M}+\mathrm{Na}-\mathrm{H}]^{+} ;$HRMS (TOF) m/z calcd. for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{O}_{8}$: 465.1549, found: 465.1562.

Synthesis of BC-5: A similar procedure was adopted to afford BC-5 ($0.66 \mathrm{~g}, 50.1 \%$) as white solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}_{6} \mathrm{~d}_{6}, \mathrm{ppm}\right): \delta 12.83(\mathrm{br}, 2 \mathrm{H}), 8.02(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.69(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.26(\mathrm{~s}, 2 \mathrm{H}), 3.89(\mathrm{~m}, 4 \mathrm{H}), 3.63(\mathrm{~m}, 4 \mathrm{H}), 3.33(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, DMSO- $\left.d_{6}, \mathrm{ppm}\right): \delta 167.6,150.6,142.3,135.2,130.2 ; 129.8,129.6,126.0,73.4,70.7,70.0,69.9 ;$ ESI-MS m/z: $1054.6[2 \mathrm{M}+\mathrm{K}-\mathrm{H}]^{+}$; HRMS (TOF) m/z calcd. for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{O}_{9}: 509.1812$, found: 509.1824.

${ }^{1}$ HNMR, ${ }^{13}$ CNMR \& Mass Spectra of BC-4 and BC-5:

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of BC-4.

Figure S2. ${ }^{1} \mathrm{H}$ NMR spectrum of BC-5.

Figure S3. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{BC}-4$.

Figure S4. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathrm{BC}-5$.

Figure S5. ESI-MS of BC-4.

Figure S6. ESI-MS of BC-5.
3. Crystal Data and Structure Refinement Details for BC-4 and BC-5:

Figure S7. Photos of BC-5 (left) and BC-4 (right) crystals.

Figure S8. Single crystal X-ray structure of BC-4, with three DMF molecules omitted for clarity.

Table S1. Crystal data and structure refinement for BC-4.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=26.00^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Largest diff. peak and hole

BC-4
C35 H45 N3 O11
683.74

103(2) K
$0.71073 \AA$
Triclinic
P-1
$a=9.2812(5) \AA \quad \alpha=90.146(4)^{\circ}$.
$\mathrm{b}=10.8141(7) \AA \quad \beta=96.815(4)^{\circ}$.
$\mathrm{c}=17.5421(12) \AA \quad \gamma=99.763(3)^{\circ}$.
1722.44(19) \AA^{3}

2
$1.318 \mathrm{Mg} / \mathrm{m}^{3}$
$0.098 \mathrm{~mm}^{-1}$
728
$0.40 \times 0.36 \times 0.34 \mathrm{~mm}^{3}$
1.17 to 26.00°.
$-11<=\mathrm{h}<=11,-13<=\mathrm{k}<=13,-21<=1<=21$
28037
$6776[\mathrm{R}(\mathrm{int})=0.0766]$
99.9 \%

Semi-empirical from equivalents
0.9673 and 0.9617

Full-matrix least-squares on F^{2}
6776 / 6/442
1.130
$\mathrm{R} 1=0.0761, \mathrm{wR} 2=0.1692$
$\mathrm{R} 1=0.0999, \mathrm{wR} 2=0.1942$
0.342 and -0.496 e. \AA^{-3}

Figure S9. Single-crystal X-ray structure of BC-5, with two DMSO molecules omitted for clarity.

Table S2. Crystal data and structure refinement for BC-5.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.00^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Largest diff. peak and hole

BC-5
C32 H40 O11 S2
664.76

103(2) K
$0.71073 \AA$
Triclinic
P-1
$a=9.5432(16) \AA \quad \alpha=105.358(8)^{\circ}$.
$\mathrm{b}=10.5250(19) \AA \quad \beta=93.281(9)^{\circ}$.
$\mathrm{c}=17.119(3) \AA \quad \gamma=96.235(9)^{\circ}$.
1641.6(5) \AA^{3}

2
$1.345 \mathrm{Mg} / \mathrm{m}^{3}$
$0.221 \mathrm{~mm}^{-1}$
704
$0.40 \times 0.16 \times 0.10 \mathrm{~mm}^{3}$
2.02 to 25.37°.
$-10<=\mathrm{h}<=11,-12<=\mathrm{k}<=12,-20<=1<=20$
23865
$5704[\mathrm{R}(\mathrm{int})=0.0998]$
96.8 \%

Semi-empirical from equivalents
0.9782 and 0.9168

Full-matrix least-squares on F^{2}
5704 / 0 / 412
1.006
$\mathrm{R} 1=0.0587, \mathrm{wR} 2=0.1416$
$R 1=0.1250, w R 2=0.1827$
0.378 and -0.473 e. \AA^{-3}

4. ${ }^{1} \mathbf{H}$ NMR Titration by Alkali Ions:

Figure S10. Partial ${ }^{1} \mathrm{H}$ NMR spectra (400 MHz) of BC-4 $\left(1.3 \times 10^{-3} \mathrm{M}\right.$ in DMF- d_{7}) at $25{ }^{\circ} \mathrm{C}$ in the presence of increasing amount of LiCl (from bottom to top: 0 to 1.02 equiv). Protons labeled with ∇ correspond to ones from the crown ether rings.

Figure S11. Partial ${ }^{1} \mathrm{H}$ NMR spectra (400 MHz) of BC-5 $\left(1.4 \times 10^{-3} \mathrm{M}\right.$ in DMF- $\left.d_{7}\right)$ at $25{ }^{\circ} \mathrm{C}$ in the presence of increasing amount of NaCl (from bottom to top: 0 to 1.0 equiv). Protons labeled with ∇ correspond to ones from the crown ether rings.

5. UV-Vis Titration by Alkali Ions

Figure S12. (a) The absorbance spectra of BC-4 $\left(2.0 \times 10^{-4} \mathrm{M}\right.$ in DMF) in the presence of increasing amount of LiCl (curves from top to bottom: $0,4.0 \times 10^{-6}, 8.0 \times 10^{-6}, 8.0 \times 10^{-5}, 1.0 \times$ $\left.10^{-4}, 2.0 \times 10^{-4} \mathrm{M}\right)$, and (b) plot fitting ($R=0.9854$) for the calculation of binding constant using Benesi-Hildebrand equation, $1 / \Delta \mathrm{A}=1 / \alpha+1 / \alpha \mathrm{K}[$ Metal $]$.

(a)

(b)

Figure S13. (a) The absorbance spectra of BC-5 $\left(2.1 \times 10^{-4} \mathrm{M}\right.$ in DMF) in the presence of increasing amount of NaCl (curves from top to bottom: $0,4.0 \times 10^{-6}, 8.0 \times 10^{-6}, 8.0 \times 10^{-5}, 1.0 \times$ $\left.10^{-4}, 2.0 \times 10^{-4} \mathrm{M}\right)$, and (b) plot fitting ($R=0.9883$) for the calculation of binding constant using the same equation indicated in Figure S12.

6. ESI-MS of Complexes

Figure S14. The ESI/MS spectra of BC-4 ($2.0 \times 10^{-5} \mathrm{M}$ in DMF) before (left) and after (right) adding 1.0 equiv of LiCl . The signal at $950.8(\mathrm{~m} / \mathrm{z})$ corresponds to the complex cation $[2 M+\mathrm{Na}-\mathrm{H}]^{+}$and the signal at $471.2(\mathrm{~m} / \mathrm{z})$ corresponds to $[M+\mathrm{Li}-\mathrm{H}]^{+}$.

Figure S15. The ESI/MS spectra of BC-5 ($1.9 \times 10^{-5} \mathrm{M}$ in DMF) before (left) and after (right) adding 1.0 equiv of NaCl . The signal at $1054.6(\mathrm{~m} / \mathrm{z})$ corresponds to the complex cation $[2 M+\mathrm{K}-\mathrm{H}]^{+}$and the signal at $531.2(\mathrm{~m} / \mathrm{z})$ corresponds to $[M+\mathrm{Na}-\mathrm{H}]^{+}$.

7. Crystal Data and Structure Refinement Details for MOF-BC-4, MOF-BC-5 and

 IRMOF-15

MOF-BC-4

MOF-BC-5

IRMOF-15

Figure S16. Photos of MOF-BC-4, MOF-BC-5, and IRMOF-15 crystals.

Figure S17. Asymmetrical unit of MOF-BC-4. Hydrogen atoms, and partial bismethylenedioxy units of BC-4 are not shown.

Table S3. Crystal data and structure refinement for MOF-BC-4.

Identification code

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume

Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=22.60^{\circ}$
Absorption correction
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Largest diff. peak and hole

MOF-BC-4
C70 H48 O21 Zn4
1486.64

143(2) K
$0.71073 \AA$
Tetragonal
P42/ncm
$a=21.4901(11) \AA \quad \alpha=90.00^{\circ}$.
$\mathrm{b}=21.4901(11) \AA \quad \beta=90.00^{\circ}$.
$\mathrm{c}=42.883(4) \AA \quad \gamma=90.00^{\circ}$.
19805(2) \AA^{3}
4
$0.499 \mathrm{Mg} / \mathrm{m}^{3}$
$0.504 \mathrm{~mm}^{-1}$
3024
$0.60 \times 0.60 \times 0.60 \mathrm{~mm}^{3}$
1.90 to 22.60°.
$-23<=\mathrm{h}<=23,-22<=\mathrm{k}<=23,-39<=\mathrm{l}<=46$
77217
$6856[\mathrm{R}(\mathrm{int})=0.1495]$
99.9 \%

None
Full-matrix least-squares on F^{2}
6856 / 47 / 255
0.945
$\mathrm{R} 1=0.0767, \mathrm{wR} 2=0.2138$
$R 1=0.1245, w R 2=0.2301$
0.598 and -0.657 e. \AA^{-3}

Figure S18. Asymmetrical unit of MOF-BC-5. Bismethylenedioxy units of BC-5 are not shown.

Table S4. Crystal data and structure refinement for MOF-BC-5.

Identification code	MOF-BC-5
Empirical formula	C60 H24 O13 Zn4
Formula weight	1214.27
Temperature	153(2) K
Wavelength	0.71073 A
Crystal system	Cubic
Space group	Im-3m
Unit cell dimensions	$a=21.4744(13) \AA$ A $\quad \alpha=90.00^{\circ}$.
	$b=21.4744(13) \AA$ A $\quad \beta=90.00^{\circ}$.
	$\mathrm{c}=21.4744(13) \AA$ A ${ }^{\text {a }}$ (
Volume	9902.9(10) \AA^{3}
Z	2
Density (calculated)	$0.407 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.496 \mathrm{~mm}^{-1}$
F(000)	1216
Crystal size	$0.30 \times 0.25 \times 0.25 \mathrm{~mm}^{3}$
Theta range for data collection	1.90 to 25.16°.
Index ranges	$-25<=\mathrm{h}<=25,-25<=\mathrm{k}<=24,-19<=\mathrm{l}<=25$
Reflections collected	25086
Independent reflections	907 [R(int) $=0.1062$]
Completeness to theta $=25.16^{\circ}$	99.9\%
Absorption correction	None
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	907 / 6/44
Goodness-of-fit on F^{2}	1.105
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0921, \mathrm{wR} 2=0.2759$
R indices (all data)	$\mathrm{R} 1=0.1460, \mathrm{wR} 2=0.3150$
Largest diff. peak and hole	0.365 and -0.409 e. \AA^{-3}

8. Powder X-Ray Diffraction

(a)

(b)

Figure S19. Powder XRD patterns of (a) as-synthesized MOF-BC-4 (red curve) with simulated one from single crystal data (blue curve), and (b) as-synthesized MOF-BC-5 (red curve) with simulated one from single crystal data (black curve).

Figure S20. Powder XRD patterns of activated MOF-BC-4 before (red curve) and after (blue curve) immersing into Li^{+}solution followed by drying.

9. TGA for BC-4, BC-5, MOF-BC-4 and MOF-BC-5

Figure S21. TGA trace for BC-4. Experimental conditions: nitrogen atmosphere, heating rate of $5^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$ in the temperature range of $22-600^{\circ} \mathrm{C}$.

Figure S22. TGA trace for BC-5. Experimental conditions: nitrogen atmosphere, heating rate of $5^{\circ} \mathrm{C} \mathrm{min}^{-1}$ in the temperature range of $22-600^{\circ} \mathrm{C}$.

Figure S23. TGA trace for as-synthesized MOF-BC-4. Experimental conditions: nitrogen atmosphere, heating rate of $5^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}$ in the temperature range of 22-600 ${ }^{\circ} \mathrm{C}$.

Figure S24. TGA trace for as-synthesized MOF-BC-5. Experimental conditions: nitrogen atmosphere, heating rate of $5^{\circ} \mathrm{C} \mathrm{min}^{-1}$ in the temperature range of 22-600 ${ }^{\circ} \mathrm{C}$.

10. References

S1. Z. J. Zhu and T. M. Swager, Org. Lett., 2011, 3, 3471-3473.
S2. S. Kopolow, T. E. Hogen Esch and J. Smid, Macromolecules, 1973, 6, 133-142.

