Supplementary Material

Destabilisation of Hydrogen Bonding and the Phase Stability of Aniline at

High Pressure

Nicholas P. Funnell,^{1.2} Alice Dawson,^{1,3} William G. Marshall⁴ and Simon Parsons^{*1}

¹ EaStCHEM School of Chemistry and Centre for Science at Extreme Conditions, The University of Edinburgh, King's Buildings, West Mains Road, Edinburgh, EH9 3JJ, UK.

² Present address: Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3Q, UK.

³ Present address: College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.

⁴ ISIS Pulsed Neutron and Muon Facility, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Harwell Oxford, Didcot, OX11 0QX, UK.

Figure S1: Observed inelastic neutron scattering spectrum of aniline (red)⁶⁷ compared to the one calculated using periodic DFT (blue)

Figure S2: Hydrogen bond geometry in aromatic amines. The search was conducted by constructing two aniline units connected by an NH...N hydrogen bond. Only organic structures were searched, with R < 0.075, with 3D coordinates determined and no disorder, errors or powder structures. H-atom positions were normalised, and distance ranges for H....N and N...N contacts were 0 - 3.5 and 0 - 4.0 Å, respectively. Angle limits for NH...N were $120 - 180^{\circ}$ (see P.A. Wood, F.H. Allen and E. Pidcock, *CrystEngComm* (2009), **11**, 1563-1571. This search yielded 332 hits and 517 data points.

