Computation details

In the current work, all density-functional theory (DFT) calculations were performed in the DMOL3 code.²³ The Perdew Wang²⁴ (PW91) version of generalized gradient approximation (GGA) was employed as exchange correlation function. The tolerances of geometry optimization were set as the difference of the total energy within 10⁻⁵ hartree, maximum force within 0.002 hartree/Å and maximum displacement in 0.005 Å. The Gaussian smearing of electron density was applied with the energy range of 0.005 hartree.

TiC_{1.0} and TiN_{1.0} are face centered cubic (fcc) structures belong to Fm-3m space group. First, the crystal which contains 4 metal Ti atoms and 4 non-metal C/N atoms was made. The metal atom sit at (0, 0, 0) and the non-metal atom sit at (0.5, 0.5, 0.5).The lattice constants for TiC_{1.0} and TiN_{1.0} are 4.33 and 4.25, respectively. Second, a $2\times2\times2$ supercell was constructed consists of 32 Ti atoms and 32 C/N atoms (see Figure A). The models for different stoichiometry of TiC_x and TiN_x we adopt from Hugosson's work²² are shown in Figure 1. The corresponding values of x of the substoichiometric TiC_x and TiN_x were 0.50, 0.625, 0.75, 0.875 and 1.0. The formation energies (E_{form}) of TiC_x and TiN_x with different stoichiometries were shown in Table A.

Figure B shows the crystal structures the $\{100\}$ and $\{111\}$ surfaces. It can be seen that the $\{100\}$ planes contain both Ti and C(N) atoms in each slab, but the polar $\{111\}$ planes contain alternating arrangement of Ti and C(N) layers and is Ti terminated at both the ends. The minimum slab thickness for TiC_x and TiN_x is 7 atom

layers for $\{100\}$ surfaces, and 9 for $\{111\}$ surfaces. The surfaces calculated in the work are fully relaxed for all layers. To model the $\{100\}$ and $\{111\}$ surfaces, we used the supercell approach with a vacuum of 15 Å between the slabs.

The surface energy of $\{100\}$ and $\{111\}$, σ , can be given by

$$\sigma = (E_{tot} - N_{\mathrm{Ti}}\mu_{\mathrm{Ti}} - N_{\mathrm{CN}}\mu_{\mathrm{CN}})/2A \tag{1}$$

Here, E_{tot} is the total energy of the slab, and μ_{Ti} and $\mu_{C/N}$ are the chemical potentials of each Ti and C(N) atom, respectively. In addition, N_{Ti} and $N_{C/N}$ are the numbers of the corresponding atoms in the slabs. The total chemical potential of the elemental Ti and C(N) is in equilibrium with that of bulk TiC_{1.0} and TiN_{1.0}: $\mu_{TiC(N)_{1.0}}$ (bulk) = $\mu_{Ti} + \mu_{C/N}$. Accordingly, Eq. (1) becomes

$$\sigma = \left(E_{\rm tot} - N_{\rm Ti} \mu_{\rm TiC(N)_{1.0}} (\rm bulk) + (N_{\rm Ti} - N_{\rm C/N}) \mu_{\rm C/N} \right) / 2A$$
(2)

The elemental C(N) chemical potential was used to replace the corresponding bulk chemical potential which is -1.66×10^{-16} J/atom and -2.38×10^{-16} J/atom, respectively.

The Brillouin-zone integrations were set within $6 \times 6 \times 6$ k-point mesh for the bulk and $6 \times 6 \times 1$ k-point mesh for the slab. None spin polarization was used for both bulk and surface calculations.

FIGURE CAPTIONS

Figure A. The crystal structures of single crystal and supercell of $TiC_{1.0}$ ($TiN_{1.0}$).

Figure B. Crystal structures of $\{100\}$ and $\{111\}$ surfaces with a vacuum of 15 Å between the slabs.

	x	0.5	0.625	0.75	0.875	1.0
E _{form} (J/atom)	TiC _x	-1.10×10 ⁻¹⁹	-1.26×10 ⁻¹⁹	-1.35×10 ⁻¹⁹	-1.43×10 ⁻¹⁹	-1.47×10 ⁻¹⁹
	TiN _x	-2.12×10 ⁻¹⁹	-2.45×10 ⁻¹⁹	-2.68×10 ⁻¹⁹	-2.84×10 ⁻¹⁹	-2.95×10 ⁻¹⁹

Table A. The formation energies (E_{form}) of TiC_x and TiN_x with different