The synthesis, structure and magnetism studies of two manganese sulfates with a 3D zeolite GIS framework and 1D chain structure

Gen-Wu Ge,^a Zhi-Yuan Qi,^a Yu-Run Miao,^a Hong-Bin Du,^{*a} Xiao-Zeng You^a

^a State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China. Fax: +86-25-8331 4502; Tel: +86-25-8368 6581; E-mail: <u>hbdu@nju.edu.cn</u>

Crystal structure determinations

Suitable single crystals of **1** ($0.22 \times 0.17 \times 0.32 \text{ mm3}$) and **2** ($0.12 \times 0.12 \times 0.50 \text{ mm}^3$) were selected for single-crystal X-ray diffraction analyses. The measurements were carried out on a Bruker SMART APEX CCD diffractometer operating at room temperature. Intensities were collected with graphite monochromatized Mo-K α radiation ($\lambda = 0.71073 \text{ Å}$) operating at 50 kV and 30 mA. Data reductions and absorption corrections were performed using the SAINT and SADABS programs ¹, respectively. The structures were solved by direct methods using the SHELXS-97 program and refined with full-matrix least squares on F² using the SHELXL-97 program ². Anisotropic thermal parameters were refined for all non-hydrogen atoms. Details of the crystal parameters, data collection and refinement results are summarized in the Table S1. Selected interatomic bond lengths and angles are listed in Table S2.

Compound reference 1 2	
Chemical formula $C_2H_6MnO_6S C_8H_{28}N_4Mn_2S_4C_5$) ₁₈
Formula Mass 213.07 706.46	
Crystal system Orthohombic Monoclinic	
<i>a</i> /Å 12.4527(18) 13.0864(10)	
<i>b</i> /Å 13.616(2) 11.9903(9)	
c/Å 13.984(2) 14.3224(11)	
α/° 90.00 90.00	
β/° 90.00 90.897(2)	
y/° 90.00 90.00	
Unit cell volume/Å ³ 2371.2(6) 2247.1(3)	
Temperature/K 291(2) 296(2)	
Space group $Fddd$ $P21/c$	
No. of formula units per unit cell, Z 16 4	
Absorption coefficient, μ/mm^{-1} 2.546 1.592	
No. of reflections measured 2983 17692	
No. of independent reflections 590 5628	
R_{int} 0.0401 0.0480	
Final R_I values $(I > 2\sigma(I))^{a}$ 0.0202 0.0447	
Final $wR(F^2)$ values $(I > 2\sigma(I))^{a}$ 0.0552 0.1167	
Final R_I values (all data) ^{<i>a</i>} 0.0210 0.0568	
Final $wR(F^2)$ values (all data) ^{<i>a</i>} 0.0559 0.1238	
Goodness of fit on F^2 1.050 1.046	
CCDC number 896280 896281	

 ${}^{a}R_{I} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|, wR = [\Sigma w (F_{o}^{2} - F_{c}^{2})^{2} / \Sigma w (F_{o}^{2})^{2}]^{1/2}.$

				1				
Mn1—O1	2.182	8(14)	O3—Mn1-	O3 ⁱⁱ	88.35(6	5) O3–	-Mn1-O1	89.67(5)
Mn1—O3	2.158	5(12)	O3—Mn1-	$-O2^{v}$	82.77(4) 01 ⁱⁱ -	Mn1O1	95.99(8)
Mn1—O2	2.179	0(12)	O3 ⁱⁱ —Mn1-	-02^{v}	107.35(5) C1–	O1Mn1	129.23(11)
S1—O2	1.471	5(12)	O2 ^v —Mn1-	$-O2^{iv}$	166.20(7) S1–	-O3Mn1	132.61(7)
S1—O3	1.483	5(12)	O3—Mn1-	–O1 ⁱⁱ	164.94(5) O2 ⁱⁱ	ⁱ —S1—O2	110.11(10)
C1-01	1.43	6(2)	O2 ^v —Mn1-	O1 ⁱⁱ	83.58(5	5) O2-	—S1—O3	109.33(7)
C1-C1 ⁱ	1.50	6(3)	O2 ^{iv} —Mn1-	—O1 ⁱⁱ	87.19(5	5) O3-	-S1O3 ⁱⁱⁱ	109.71(10)
				2				
Mn1—O11 ⁱⁱ	2.108(2)	S1—O3	1.483(2)	O14—M	n1—O8	94.98(10)	O1—S1—O3	107.98(16)
Mn1—014	2.114(2)	S1—O4	1.463(2)	O8—Mn	1—018	78.9(1)	O4—S1—O3	108.98(15)
Mn1—O8	2.143(2)	S3—O10	1.463(2)	011 ⁱⁱ —M	n1—O14	95.6(1)	O7—S2—O5	112.40(15)
Mn1—O18	2.215(3)	S3—O12	1.463(2)	O14—Mı	n1—013	145.96(8)	O7—S2—O8	107.41(13)
Mn1—013	2.256(2)	S3—O13	1.481(2)	O18—Mı	n1—O12	154.47(10)	O5—S2—O6	105.10(13)
Mn1—012	2.305(2)	S2—O5	1.463(2)	013—Mı	n1—012	61.72(8)	O8—S2—O6	109.97(14)
Mn2—O10	2.103(2)	S2—O8	1.465(2)	O4—Mı	n2—06	166.97(9)	O11—S3—O10	107.24(13)
Mn2—O4	2.106(2)	S2—O6	1.486(2)	O10—M	n2—07 ⁱ	169.97(10)	O11—S3—O12	111.74(15)
Mn2—O7 ⁱ	2.145(2)	S2—O7	1.460(2)	O4—Mr	$12-07^{i}$	89.6(1)	O10—S3—O12	112.15(15)
Mn2—09	2.155(2)	S3—O11	1.462(2)	O9—Mı	n2—O5	158.01(9)	O12—S3—O13	105.26(13)
Mn2—06	2.252(2)	S4—O16	1.453(3)	06—Mı	n2—O5	61.13(8)	O16—S4—O15	111.12(15)
Mn2—O5	2.349(2)	S4—O15	1.471(2)	O9—Mı	n2—06	98.06(9)	O16—S4—O17	109.68(16)
S1—O1	1.450(3)	S4—O17	1.471(2)	O2—S	1—01	109.8(2)	O15—S4—O14	108.07(14)
S1—O2	1.447(3)	S4—O14	1.476(2)	O2—S	1—04	109.95(16)	O17—S4—O14	107.63(15)

Table S2 Selected interatomic distances (Å) and angles (deg) for 1 and 2^a

^a Symmetry transformations used to generate equivalent atoms. for **1**: i: -x, 2-y, 1-z; ii: 1/4-x, 9/4-y, z; iii: 1/4-x, y, 1/4-z; iv: -1/4+x, 1/4+y, 1/2-z; v: 1/2-x, 2-y, 1/2-z; for **2**: (i) 1-x, 1-y, -z; (ii) 2-x, 1-y, -z.

Characterization

Powder X-ray diffraction (PXRD) data were obtained using a Bruker D8 Advance diffractometer with Cu K α radiation ($\lambda = 1.54056$ Å), with a step speed of 0.2° per second. FT-IR spectra were recorded on a Nicolet Impact 410 spectrometer between 400 and 4000 cm⁻¹ using the KBr pellet method. Thermogravimetric analyses (TGA) were conducted on a Perkin-Elmer Pyris I thermogravimetric analyzer with a heating rate of 20°C·min⁻¹ in an N₂ atmosphere. The temperature-dependent magnetic susceptibility measurements of compounds 1 and 2 were performed on the powdered samples in the temperature range of 1.8–300 K at a 2000 Oe external field with a Quantum Design MPMS-XL7 SQUID magnetometer.

Fig. S1 Powder X-ray diffraction (PXRD) patterns of 1 (a) and 2 (b).

Fig. S2 The microscopy images of crystals of 1 (a, $\times 100$) and 2 (b, $\times 200$).

Fig. S3 ORTEP drawing of the coordination environment of Mn in **1** (A: -x, 2-y, 1-z; B: 1/4-x, 9/4-y, z; C: 1/4-x, y, 1/4-z; D: -1/4+x, 1/4+y, 1/2-z; E: 1/2-x, 2-y, 1/2-z).

Fig. S4 Polyhedral presentations of **1** along the [011] direction, showing the 8-MR channels and the residing EG molecules (all the H atoms are omitted for clarity).

Fig. S5 ORTEP drawing of the asymmetric unit of 2 with ellipsoids drawn at the 50% probability.

Fig. S6 TG curves for 1 and 2 measured in a N_2 atmosphere

References:

- [1] SMART and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.
- [2] G. M. Sheldrick, Acta Crystallogr., 2008, A64, 112–122.