Supporting information of

A novel organic salt with water/humidity-induced fluorescence switching and heat-induced coloration performance

Shuo-ping Chen,*^{a,b} Pu Deng,^a Chu-feng Yuan,^c Liang-jie Yuan*^a

^a College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China. *Corresponding author. E-mail: ljyuan@whu.edu.cn. Tel: +86-27-6875-2800

^b Key Lab of New Processing Technology for Nonferrous Metals & Materials, Ministry of Education, College of Materials Science and Engineering, Guilin University of technology, Guilin 541004, P. R. China. *Corresponding author. E-mail: chenshuoping_777@163.com. Tel: +86-773-5896290

^c School of Computer Science, Wuhan University, Wuhan 430072, P. R. China

List:

Figure S1. The Oak Ridge Thermal Ellipsoid Plot (ORTEP) of the unsymmetrical unit of **1** with thermal ellipsoids at the 30% probability level.

Figure S2. Emission spectra of sulfuric acid solution of phen with different concentrations (the mole ratio of phen and H_2SO_4 is 1:1, $\lambda_{ex} = 360$ nm).

Figure S3. TG (green) and DSC (red) curve of compound 1.

Figure S4. IR specturm of 1.

Figure S5. Green: PXRD pattern calculated from the single crystal data of **1**; Red: PXRD pattern of original dry compound **1**; Blue: PXRD pattern of **1** at 80% RH for 6 h, then at 30% RH for 24 h.

Table S6. PXRD data of the calculated result from the single crystal data of **1** (calc), original compound **1** (ori) and restored compound **1** (res, at 80% RH for 6 h, then at 30% RH for 24 h). [I = intensity (a.u.)]

Figure S7. ¹H NMR spectrum of compound **3a**.

Figure S8. ¹H NMR spectrum of compound **3b**.

Figure S9. ¹H NMR spectrum of compound **3c**.

Figure S10. ¹³C NMR spectrum of compound **3a**.

Figure S11. ¹³C NMR spectrum of compound **3b**.

Figure S12. ¹³C NMR spectrum of compound **3c**.

Figure S13. HRMS spectrum of compound 3a.Figure S14. HRMS spectrum of compound 3b.Figure S15. HRMS spectrum of compound 3c.

Figure S1. The Oak Ridge Thermal Ellipsoid Plot (ORTEP) of the unsymmetrical unit of **1** with thermal ellipsoids at the 30% probability level.

Figure S2. Emission spectra of sulfuric acid solution of phen with different concentrations (the mole ratio of phen and H_2SO_4 is 1:1, $\lambda_{ex} = 360$ nm).

Figure S3. TG (green) and DSC (red) curve of compound **1**. This compound can be stable to 45 °C in nitrogen. Then it decomposes till 83 °C with a weight loss of 2.69 % (Calc. 2.88 %), attributed to the release of the lattice water molecule. In addition, there is an exothermic peak in the range of 145 °C~230 °C, which can be attributed to the *in situ* hydrogenation reaction of **1**.

Figure S4. IR specturm of 1.

Figure S5. Green: PXRD pattern calculated from the single crystal data of **1**; Red: PXRD pattern of original dry compound **1**; Blue: PXRD pattern of **1** at 80% RH for 6 h, then at 30% RH for 24 h.

Table S6. PXRD data of the calculated result from the single crystal data of **1** (calc), original compound **1** (ori) and restored compound **1** (res, at 80% RH for 6 h, then at 30% RH for 24 h). [I = intensity (a.u.)]

	-					-			
			The calculated result						
			from th	ne single	The	original	The	restored	
h	k	1	crystal d	ata of 1	compound	1 (ori)	compound	1 (res)	
			(calc)						
			$2 heta_{calc}$ (°)	<i>I</i> _{calc}	$2\theta_{ori}$ (°)	I _{ori}	$2\theta_{res}$ (°)	Ires	
0	1	1	9.54	6388	9.56	1222	9.50	203	
1	1	-1	11.26	498	11.22	19	11.24	33	
1	1	2	14.70	530	14.66	25	14.68	28	
1	0	-3	15.14	1820	15.12	83	15.04	416	
2	1	0	15.44	532	15.42	44	15.44	33	
0	1	3	16.58	10000	16.56	774	15.62	917	
1	2	0	17.78	363	17.78	21	17.76	20	
0	0	4	19.20	4849	19.16	1538	19.16	1443	
3	0	-1	19.70	693	19.70	158	19.68	43	
1	2	-2	19.88	2409	19.86	348	19.82	128	
1	2	2	20.56	2398	20.58	101	20.56	100	
3	0	1	20.72	2787	20.62	91	20.66	182	
1	1	-4	21.30	3948	21.22	156	21.24	507	
2	2	1	21.98	734	21.90	45	21.94	62	
1	1	4	22.56	2718	22.52	294	22.46	244	
3	0	-3	23.10	1386	23.06	542	23.04	90	
2	1	-4	23.60	892	23.52	137	23.50	94	
3	1	2	24.28	2259	24.20	221	24.24	107	
2	0	4	24.44	833	24.44	37	24.34	127	
0	2	4	25.44	3564	25.38	264	25.32	117	
2	1	4	25.84	1420	25.72	54	25.78	114	
4	0	0	26.26	5336	26.22	105	26.20	679	
3	2	1	26.62	1080	26.62	37	26.58	57	
3	2	-2	26.76	930	26.76	44	26.70	100	
4	0	-2	27.00	5163	26.92	197	26.92	109	
2	1	-5	27.48	7538	27.44	378	27.40	1284	
2	3	0	28.20	1780	28.18	124	28.14	108	
4	1	-2	28.26	2445	28.24	96	28.24	101	
3	2	-3	28.52	635	28.52	25	28.46	55	
0	0	6	28.98	509	28.92	65	28.96	55	
1	2	-5	29.50	1408	29.46	67	29.38	166	
2	1	5	29.94	1793	29.86	102	29.88	50	
0	1	6	30.18	824	30.12	38	30.10	96	
1	2	5	30.66	636	30.60	29	30.60	54	
2	3	3	32.46	211	32.48	18	32.46	169	
0	4	0	33.40	374	33.44	21	33.42	26	
5	0	1	33.90	495	33.90	41	33.92	37	
3	3	-3	34.22	619	34.18	42	34.14	71	

Electronic Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry 2012

3	1	-6	34.42	582	34.44	27	34.44	28
5	2	-2	37.46	442	37.48	16	37.48	29
4	2	-5	37.90	389	37.86	21	37.92	28
1	4	-4	39.02	343	39.00	44	39.04	28
4	2	5	41.58	360	41.60	18	41.58	65
0	3	7	42.54	474	42.52	28	42.50	74
2	5	1	44.72	347	44.72	22	44.72	21
3	5	1	47.38	471	47.40	28	47.38	47

Figure S7. ¹H NMR spectrum of compound 3a.

Figure S9. ¹H NMR spectrum of compound **3c**.

Figure S11. ¹³C NMR spectrum of compound 3b.

Figure S12. ¹³C NMR spectrum of compound 3c.

Figure S13. HRMS spectrum of compound 3a.

Figure S14. HRMS spectrum of compound 3b.

Figure S15. HRMS spectrum of compound 3c.

