## **Electronic Supporting Information**

## Hydroxypropyl-β-cyclodextrin as a versatile additive for the formation of metastable tetragonal zirconia exhibiting high thermal stability

Lei Bai,<sup>abd</sup> Frédéric Wyrwalski,<sup>abd</sup>, Cécile Machut<sup>abd</sup>, Pascal Roussel,<sup>acd</sup> Eric Monflier,<sup>abd</sup> and Anne Ponchel\*<sup>abd</sup>

<sup>a</sup> Univ Lille Nord de France, F-59000 Lille, France

<sup>b</sup> UArtois, UCCS, Faculté des Sciences Jean Perrin, Rue Jean Souvraz, F-62300 Lens, France

<sup>c</sup> Ecole Nationale Supérieure de Chimie de Lille, UCCS, F-59650 Villeneuve d'Ascq, France

<sup>d</sup> CNRS, UMR 8181, France.

Table S1. Chemical structure and characteristics of the cyclodextrin derivatives



| Abbreviation | n | Substituent R                         | Carbons<br>bearing the<br>OR group | Number of R<br>groups per<br>CD | Molecular<br>weight<br>(g mol <sup>-1</sup> ) |
|--------------|---|---------------------------------------|------------------------------------|---------------------------------|-----------------------------------------------|
| α-CD         | 6 | (-)                                   | (-)                                | 0                               | 972                                           |
| γ-CD         | 8 | (-)                                   | (-)                                | 0                               | 1297                                          |
| HP-β-CD      | 7 | CH <sub>2</sub> -CHOH-CH <sub>3</sub> | 2, 3 and 6                         | 4.2                             | 1380                                          |
| CrysMe-α-CD  | 7 | CH <sub>3</sub>                       | 2, 3 and 6                         | 4.9                             | 1204                                          |
| RaMe-β-CD    | 7 | CH <sub>3</sub>                       | 2, 3 and 6                         | 12.6                            | 1314                                          |

## Table S2. Structural parameters by Rietveld refinement of the calcined zirconia samples

| Sample     | Method | Additive    | Weight ratio<br>(%)       | Lattice constants          |                               |                         |            |
|------------|--------|-------------|---------------------------|----------------------------|-------------------------------|-------------------------|------------|
|            |        |             |                           | a, b, c (Å)                | $\alpha, \beta, \gamma$ (deg) | Crystallite<br>size (Å) | Strain (%) |
| Zr-Ref     | 1      | /           | m-ZrO <sub>2</sub> : 84.8 | a=5.142; b=5.194; c =5.306 | α, γ=90; β=98.909             | 82.8                    | 0.0029     |
|            |        |             | t-ZrO <sub>2</sub> : 15.2 | a, b=3.590; c =5.1571      | α, β, γ=90                    | 94.0                    | 0.0045     |
| Zr-HP1     | 1      | HP-β-CD     | t-ZrO <sub>2</sub> : 100  | a, b=3.598; c =5.173       | α, β, γ=90                    | 392                     | 0.0044     |
| Zr_HP3     | 3      | HP-β-CD     | m-ZrO <sub>2</sub> : 31.4 | a=5.145; b=5.184; c =5.312 | α, γ=90; β=98.60              | 69.0                    | 0.0028     |
|            |        |             | t-ZrO <sub>2</sub> : 68.6 | a, b=3.620; c =5.081       | α, β, γ=90                    | 272                     | 0.0055     |
| Zr_CD3     | 3      | α-CD        | t-ZrO <sub>2</sub> : 100  | a, b=3.594; c =5.156       | α, β, γ=90                    | 327                     | 0.0052     |
| Zr_CrysMe3 | 3      | CrysMe-β-CD | m-ZrO <sub>2</sub> : 18.2 | a=5.145; b=5.184; c =5.312 | α, γ=90; β=98.60              | 26.8                    | 0.0152     |
|            |        |             | t-ZrO <sub>2</sub> : 81.8 | a, b=3.5963; c =5.156      | α, β, γ=90                    | 403                     | 0.0056     |
| Zr_RaMe3   | 3      | RaMe-β-CD   | m-ZrO <sub>2</sub> : 51.8 | a=5.171; b=5.185; c =5.325 | α, γ=90; β=98.47              | 57.6                    | 0.0052     |
|            |        |             | t-ZrO <sub>2</sub> : 48.2 | a, b=3.607; c =5.161       | α, β, γ=90                    | 58.1                    | 0.0030     |



Fig. S1. TEM pictures of the controlled  $ZrO_2$  (Zr-Ref) with different magnifications : (a) 20 nm and (b) 10 nm



**Fig. S2.** Raman spectra of  $ZrO_2$  materials after calcination at 600°C for 4 hours obtained from the different methods of precipitation: (a) addition of HP- $\beta$ -CD in the ZrOCl<sub>2</sub> solution as described in the method 2, (b) addition of HP- $\beta$ -CD in the NH<sub>3</sub>·H<sub>2</sub>O solution as described in the method 3 and (c) addition of HP- $\beta$ -CD both in the ZrOCl<sub>2</sub> and NH<sub>3</sub>·H<sub>2</sub>O solutions as described in the method 1. m- and t- indicate the monoclinic and tetragonal phase, respectively.



**Fig. S3.** XRD patterns of  $ZrO_2$  materials after calcination at 600°C for 4 hours obtained from the method 3 by using the following organic additive: (a) of  $\alpha$ -CD, (b) HP- $\beta$ -CD, (c) CrysMe- $\beta$ -CD and (d) RaMe- $\beta$ -CD.