Supporting information

Vapor-phase crystallization route to oxidized Cu foils in air as anode materials for lithium-ion batteries

Kunfeng Chen,^{a,b} Shuyan Song^b and Dongfeng Xue*^{a,b}

^aSchool of Chemical Engineering, Dalian University of Technology, Dalian 116024, China

^bState Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street No. 5625, Changchun 130022, China

* Corresponding author. E-mail: dongfeng@ciac.jl.cn

20 (degree) Fig. S1. XRD patterns of the samples synthesized at 300 °C for different reaction times (indicated in the graphs).

2

Temperature for oxidizing Cu foils	Thickness of the oxidized products
	(μm)
200 °C	1.4
400 °C	3.9
600 °C	17.0

|--|

We calculated the oxide thickness as a function of temperature and time using the following equation:^{1,2}

$$d_{oxide}(t) = A \exp(-Q/RT) \times t^{1/2} + d_0$$

where $d_{\text{oxide}}(t)$ is the thickness of the formed copper oxide as a function of time, R is the gas constant 8.314×10^{-3} kJ K⁻¹ mol⁻¹, T is the temperature, and t is time in minutes, d_0 is the initial copper oxide thickness, and the activation energy Q was found empirically to be 33.1, 42.21, and 78.9 1 kJ mol⁻¹ for 200, 400, and 600 °C, respectively. The initial coefficient A is in units of Å·min^{-1/2} with values ranging from 5.518×10^5 to 6.658×10^7 .

1 M. Ramirez, L. Henneken and S. Virtanen, Appl. Surf. Sci., 2011, 257, 6481.

2 I. Chung Cheng and A. M. Hodge, Adv. Eng. Mater., 2012, 14, 219.

Fig. S2. Typical discharge-charge curves of the copper oxide synthesized at 300 °C

Fig. S3. Schematic illustration of fabricating Cu_xO/C blend electrode.

Fig. S4. Typical discharge-charge curves of the copper oxide synthesized at 500 °C

Fig. S5. Typical discharge-charge curves of the copper oxide synthesized at 600 °C.

Fig. S6. Typical discharge-charge curves of the copper oxide synthesized at 700 °C.

Fig. S7. Typical discharge-charge curves of the copper oxide synthesized at 800 °C.