Supporting Information

Hydrothermal Synthesis of Benzothiazole-carboxylic Cadmium(II) Coordination Networks: pH-controlled topologies and compositional distributions

Hai-Yang Yu[†], Ke-Ke Zhang[†], Mei-Jin Lin[†], Dan Gao, Xin Fang^{*†}, Ming-Dong Huang^{†‡} and Jun-Dong Wang[†]

[†] College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou, Fujian, 350108 P. R. China, [‡] State Key Laboratory of Structural Chemistry, Fujian Institute of Research on Structure of Matter, Chinese Academy of Science, Fuzhou, Fujian, 350108 P. R.

1	Cd(1)-O(2)	2.209(3)	Cd(1)-O(4)	2.276(3)	Cd(1)-O(3)	2.424(3)		
	Cd(1)-N(3)	2.279(3)	Cd(1)-O(1)	2.298(3)	Cd(1)-C(17)	2.695(3)		
	O(2)-Cd(1)-O(4)	107.50(11)	O(2)-Cd(1)-N(3)	105.16(10)	O(2)-Cd(1)-C(17)	126.92(11)		
	O(4)-Cd(1)-N(3)	144.94(10)	O(2)-Cd(1)-O(1)	112.48(10)	N(3)-Cd(1)-C(17)	118.25(10)		
	O(4)-Cd(1)-O(1)	92.30(11)	N(3)-Cd(1)-O(1)	86.76(11)	O(3)-Cd(1)-C(17)	27.95(10)		
	O(2)-Cd(1)-O(3)	136.90(11)	O(4)-Cd(1)-O(3)	55.45(9)	O(4)-Cd(1)-C(17)	27.60(10)		
	N(3)-Cd(1)-O(3)	91.55(9)	O(1)-Cd(1)-O(3)	107.81(10)	O(1)-Cd(1)-C(17)	99.58(11)		
	Cd(1)-N(1)	2.270(4)	$Cd(1)-N(1)^{\#1}$	2.270(4)	$Cd(1)-C(1)^{\#1}$	2.712(5)		
	$Cd(1)-O(2)^{\#1}$	2.302(4)	Cd(1)-O(2)	2.302(4)	Cd(1)-C(1)	2.712(5)		
	$Cd(1)-O(1)^{\#1}$	2.412(4)	Cd(1)-O(1)	2.412(4)				
	$N(1)-Cd(1)-N(1)^{\#1}$	92.5(2)	$N(1)-Cd(1)-O(2)^{\#1}$	98.97(17)	$O(2)-Cd(1)-C(1)^{\#1}$	90.14(17)		
	$N(1)^{\#1}$ -Cd(1)-O(2) ^{\#1}	147.75(16)	N(1)-Cd(1)-O(2)	147.75(16)	$O(1)-Cd(1)-C(1)^{\#1}$	119.30(17)		
	$N(1)^{\#1}$ -Cd(1)-O(2)	98.97(17)	$O(2)^{\#1}-Cd(1)-O(2)$	87.2(3)	$N(1)^{\#1}-Cd(1)-C(1)$	109.84(17)		
2	$N(1)-Cd(1)-O(1)^{\#1}$	113.61(16)	$N(1)^{\#1}$ -Cd(1)-O(1)^{\#1}	92.73(15)	O(2)-Cd(1)-C(1)	27.45(15)		
	$O(2)^{\#1}$ -Cd(1)-O(1)^{\#1}	55.06(14)	$O(2)-Cd(1)-O(1)^{\#1}$	95.95(16)	O(1)-Cd(1)-C(1)	27.71(15)		
	N(1)-Cd(1)-O(1)	92.73(15)	$N(1)^{\#1}-Cd(1)-O(1)$	113.61(16)	$O(1)^{\#1}-Cd(1)-C(1)^{\#1}$	27.71(15)		
	$O(2)^{\#1}-Cd(1)-O(1)$	95.95(16)	O(2)-Cd(1)-O(1)	55.06(14)	N(1)-Cd(1)-C(1)	120.42(16)		
	$O(1)^{\#1}$ -Cd(1)-O(1)	142.2(2)	$N(1)-Cd(1)-C(1)^{\#1}$	109.84(17)	$O(2)^{\#1}-Cd(1)-C(1)$	90.14(17)		
	$N(1)^{\#1}$ -Cd(1)-C(1)^{\#1}	120.42(16)	$O(2)^{\#1}-Cd(1)-C(1)^{\#1}$	27.45(15)	$O(1)^{\#1}-Cd(1)-C(1)$	119.30(17)		
	$C(1)^{\#1}-Cd(1)-C(1)$	104.6(2)						
	Symmetry code: #1 -x, y, -	-z+1/2; #2 x-1/2, y	/+1/2, z; #3 x+1/2, y-1/2, z.					

China

Table S1. Selected bond lengths [Å] and angles [°] for compounds 1 and 2

Table S2. Hydrogen bonding geometry (Å, °) for compounds 1 - 4.

	D-H1A	D-H	HA	DA	D-H1A		
1	N4-H1N1 ^I	0.83(4)	2.08(5)	2.907(4)	178(4)		
	N2- H3O4 ^{II}	0.89(6)	2.22(6)	3.086(5)	164(5)		
	N4 -H2 O3	0.78(5)	2.10(5)	2.863(5)	167(5)		
	Symmetry code:(I) -x+1, -y+1, -z+2; (II) x, y, z+1.						
2	N2 -H2AO1 ^I	0.88	2.01	2.857(6)	162.4		
	N2 -H2BO2 ^{II}	0.88	2.01	2.781(6)	145.8		
	(I)x-1/2, y+1/2, z; x-1/2, (II)-y+1/2, z-1/2.						

compound	excitation λ /nm	emission λ/nm	
1	354	425	
2	365	443	

Figure S1. X-ray powder diffraction patterns for compounds 1 and 2: complex **a**, simulated from single-crystal X-ray data; complex **a**', experimental data.

Figure S2. TGA profiles for compounds 1 and 2.

Figure S3. Emission spectrum of compounds 1 and 2 in solid state and ABTC in solution at room temperature

Figure S4. Mass spectra of ABTC

Figure S6. FT-IR of ABTC and compounds 1 and 2