Cd1-07	2.319(7)	O4-Cd1-O3	52.9(2)
Cd1–N3	2.325(9)	O7–Cd1–O6	85.6(2)
Cd105	2.335(6)	N3-Cd1-O6	91.2(3)
Cd1–N1 ⁱ	2.377(8)	O5-Cd1-O6	54.0(2)
Cd1-O4	2.391(7)	N1 ⁱ -Cd1-O6	83.2(2)
Cd1-O3	2.468(7)	O4Cd1O6	167.8(2)
Cd1-O6	2.507(7)	O3-Cd1-O6	138.6(2)
Cd2012	2.288(8)	O12–Cd2–O10 ⁱ	82.4(3)
Cd2–O10 ⁱ	2.317(7)	O12-Cd2-O11	169.1(3)
Cd2011	2.337(8)	O10 ⁱ –Cd2–O11	87.2(3)
Cd2–N2	2.342(8)	O12-Cd2-N2	98.4(3)
Cd2–O2	2.375(8)	$O10^{i}$ –Cd2–N2	137.8(3)
Cd201	2.457(7)	O11-Cd2-N2	87.4(3)
Cd2–O9 ⁱ	2.559(7)	O12-Cd2-O2	100.3(3)
O7-Cd1-N3	174.3(3)	$O10^{i}$ –Cd2–O2	137.2(3)
O7-Cd1-O5	81.6(2)	O11-Cd2-O2	89.4(3)
N3-Cd1-O5	100.3(3)	N2Cd2O2	84.5(3)
O7–Cd1–N1 ⁱ	86.7(2)	O12-Cd2-O1	87.5(3)
N3–Cd1–N1 ⁱ	88.2(3)	$O10^{i}$ –Cd2–O1	84.6(2)
O5–Cd1–N1 ⁱ	136.2(2)	O11-Cd2-O1	94.5(3)
O7-Cd1-O4	89.0(2)	N2Cd2O1	137.5(3)
N3-Cd1-O4	93.2(3)	O2Cd2O1	53.1(2)
O5-Cd1-O4	135.8(2)	O12–Cd2–O9 ⁱ	87.0(3)
N1 ⁱ -Cd1-O4	85.6(2)	$O10^{i} - Cd2 - O9^{i}$	53.6(2)
O7-Cd1-O3	96.7(2)	O11–Cd2–O9 ⁱ	84.4(2)
N3-Cd1-O3	88.8(3)	N2-Cd2-O9 ⁱ	84.3(2)
O5-Cd1-O3	85.3(2)	O2–Cd2–O9 ⁱ	167.4(3)
$N1^{i}$ –Cd1–O3	138.1(2)	01–Cd2–O9 ⁱ	138.2(2)

Table S1. Selected Bond distance (Å) and angle (°) data for 1.

Symmetry code to generate equivalent atoms: i: x + 1, y, z.

D-H A	<i>d</i> (H <i>A</i>)	$d(D^{\dots}A)$	∠DHA	symmetry
				transformation for A
1				
O3W-H3WA•••O11	2.00(4)	2.838(12)	170(15)	-x + 1, -y + 1, -z + 2
O3W–H3WB•••O2W	2.37(6)	3.157(18)	156(11)	
O4W–H4WA•••O5W	1.89(3)	2.723(11)	166(11)	
O4W-H4WB•••O3W	2.16(10)	2.784(13)	131(11)	
O5W–H5WA•••O7	2.06(5)	2.852(10)	154(8)	-x + 1, -y + 1, -z + 1
O5W–H5WB•••O3	1.92(3)	2.773(10)	177(12)	x + 1, y, z
O7−H7A•••O4	1.83(3)	2.674(9)	170(8)	-x + 1, -y + 1, -z + 1
O7–H7B•••O5	1.88(3)	2.728(9)	171(10)	-x, -y + 1, -z + 1
O11-H11A•••O10	1.89(3)	2.723(10)	167(9)	-x, -y + 1, -z + 2
O11-H11B•••O2	1.90(2)	2.747(11)	176(11)	-x, -y + 1, -z + 2
O12-H12A•••O4W	1.90(3)	2.741(11)	172(12)	-x + 1, -y + 1, -z + 2
O12-H12B•••O2W	1.93(5)	2.733(13)	158(11)	
N4–H4NA•••O5W	2.27(5)	3.088(13)	152(10)	-x + 1, -y + 2, -z + 1
N4–H4NB•••O9	2.32(6)	3.064(12)	141(9)	x + 1, y, z - 1
2				
O1W-H1WA•••O2	2.12(2)	2.933(4)	166(4)	x + 1, y, z
O1W-H1WB•••O6	1.92(2)	2.748(4)	168(5)	
O2W-H2WA•••O3	1.95(2)	2.768(4)	167(4)	
O2W-H2WB•••O1W	2.08(2)	2.921(4)	170(4)	-x+1/2, y+1/2, -z+1/2
N2–H2N•••O2W	1.98(2)	2.855(5)	163(4)	-x + 2, -y + 1, -z + 1
3				
N2-H2N•••O5	2.09	2.892(8)	151.4	-x + 3, -y + 1, -z
N5-H5N•••O6	2.06	2.867(8)	151.3	
O1W-H1WA•••O2W	2.00(4)	2.815(8)	159(8)	-x + 3, -y + 2, -z
O1W-H1WB•••O3	1.97(3)	2.820(8)	168(9)	
O2W–H2WA•••O2	2.08	2.933(8)	179.5	
O2W-H2WA•••O10	1.99(5)	2.766(8)	150(9)	-x + 1, -y + 1, -z + 1
4				
O1W-H1WA•••O2	2.047(16)	2.868(2)	170(2)	
O1W-H1WB•••N3	2.038(15)	2.865(2)	172(2)	-x + 1, -y - 1, -z + 1
O4–H4A•••O2	1.836(15)	2.668(2)	168(2)	-x, -y, -z
O4–H4B•••O3	1.918(15)	2.7312(19)	168(2)	-x + 1, -y, -z
N2-H2N•••O1W	2.029(17)	2.837(2)	156(2)	x, y – 1, z

Table S2. Hydrogen bonding parameters in 1–4.

Cd1–N4 ⁱ	2.340(3)	O5–Cd1–N3 ⁱⁱ	139.16(10)
Cd1–O5	2.348(3)	N1–Cd1–N3 ⁱⁱ	88.75(11)
Cd1–N1	2.349(3)	O2–Cd1–N3 ⁱⁱ	137.70(9)
Cd1–O2	2.370(2)	N4 ⁱ -Cd1-O6	95.96(10)
Cd1–N3 ⁱⁱ	2.380(3)	O5-Cd1-O6	53.58(9)
Cd1-O6	2.478(3)	N1-Cd1-O6	91.14(10)
Cd1–O3	2.514(2)	O2-Cd1-O6	136.71(9)
N4 ⁱ -Cd1-O5	98.15(11)	N3 ⁱⁱ –Cd1–O6	85.58(9)
N4 ⁱ -Cd1-N1	170.02(11)	N4 ⁱ -Cd1-O3	88.28(10)
O5-Cd1-N1	91.71(11)	O5-Cd1-O3	136.21(9)
N4 ⁱ -Cd1-O2	88.79(11)	N1-Cd1-O3	83.49(10)
O5-Cd1-O2	83.13(9)	O2-Cd1-O3	53.60(8)
N1-Cd1-O2	90.85(11)	N3 ⁱⁱ –Cd1–O3	84.39(9)
N4i-Cd1-N3 ⁱⁱ	84.83(11)	O6-Cd1-O3	168.72(9)

Table S3. Selected Bond distance (Å) and angle (°) data for **2**.

Symmetry codes to generate equivalent atoms: i: -x + 1/2, y - 1/2, -z + 1/2. ii: x + 1, y, z.

Cd1–O1 ⁱ	2.319(5)	N1–Cd2–O4 ⁱⁱⁱ	99.9(2)
Cd1–N4	2.322(6)	N1-Cd2-O7 ^{iv}	84.8(2)
Cd1-09	2.333(5)	O4 ⁱⁱⁱ –Cd2–O7 ^{iv}	128.10(17)
Cd1–N3	2.352(6)	N1–Cd2–N6 ^v	164.9(2)
Cd1–O6 ⁱⁱ	2.386(5)	O4 ⁱⁱⁱ –Cd2–N6 ^v	94.7(2)
Cd1–O10 ⁱⁱ	2.461(5)	O7 ^{iv} -Cd2-N6	83.4(2)
Cd1-O1	2.475(5)	N1-Cd2-O5	96.28(19)
Cd2–N1	2.317(6)	O4Cd2O5	86.77(17)
Cd2–O4 ⁱⁱⁱ	2.346(5)	O7 ^{iv} –Cd2–O5	144.55(17)
Cd2–O7 ^{iv}	2.346(5)	$N6^{v}$ –Cd2–O5	88.1(2)
Cd2–N6 ^v	2.347(6)	N1–Cd2–O7 ⁱⁱⁱ	95.1(2)
Cd2-O5	2.365(5)	O4–Cd2–O7 ⁱⁱⁱ	52.84(17)
Cd2–O7 ⁱⁱⁱ	2.467(5)	O7 ^{iv} –Cd2–O7 ⁱⁱⁱ	75.29(19)
Cd2-O3	2.470(5)	N6 ^v –Cd2–O7 ⁱⁱⁱ	90.8(2)
O1 ⁱ –Cd1–N4	86.7(2)	O5–Cd2–O7 ⁱⁱⁱ	139.37(16)
01 ⁱ –Cd1–O9	128.14(19)	N1-Cd2-O3	81.8(2)
N4Cd1O9	99.9(2)	O4 ⁱⁱⁱ –Cd2–O3	140.39(17)
O1 ⁱ –Cd1–N3	83.8(2)	O7 ^{iv} –Cd2–O3	91.51(17)
N4Cd1N3	167.2(2)	$N6^{v}$ –Cd2–O3	89.2(2)
O9-Cd1-N3	92.7(2)	O5Cd2O3	53.92(16)
$O1^{i}$ -Cd1-O6 ⁱⁱ	143.24(18)	O7 ⁱⁱⁱ –Cd2–O3	166.71(16)
N4Cd1O6 ⁱⁱ	93.2(2)	Cd1 ⁱ –O1–Cd1	105.3(2)
09–Cd1–O6 ⁱⁱ	88.12(18)	$Cd2^{vi}$ –O7– $Cd2^{iii}$	104.70(19)
N3-Cd1-O6 ¹¹	89.27(19)	O4Cd2O5	86.77(17)
$O1^{1}$ -Cd1-O10 ¹¹	89.46(18)	$O7^{1v}$ –Cd2–O5	144.55(17)
N4-Cd1-O10 ¹¹	83.3(2)	N6 ^v -Cd2-O5	88.1(2)
O9–Cd1–O10 ¹¹	142.27(18)	N1-Cd2-O7 ¹¹¹	95.1(2)
N3-Cd1-O10 ¹¹	88.0(2)	O4Cd2O7 ¹¹¹	52.84(17)
$O6^{11}$ -Cd1-O10 ¹¹	54.16(17)	$O7^{1v}$ -Cd2-O7 ¹¹¹	75.29(19)
O1 ¹ -Cd1-O1	74.7(2)	$N6^{v}-Cd2-O7^{m}$	90.8(2)
N4Cd1O1	92.7(2)	O5–Cd2–O7 ¹¹¹	139.37(16)
O9-Cd1-O1	53.81(17)	N1-Cd2-O3	81.8(2)
N3-Cd1-O1	93.0(2)	O4 ¹¹¹ –Cd2–O3	140.39(17)
O6 ¹¹ –Cd1–O1	141.92(17)	$O7^{1V}$ -Cd2-O3	91.51(17)
O10 ⁿ –Cd1–O1	163.85(16)	N6 ^v -Cd2-O3	89.2(2)
Cd1 ¹ –O1–Cd1	105.3(2)	O5-Cd2-O3	53.92(16)
$Cd2^{v_1}-O7-Cd2^{u_1}$	104.70(19)	07 ¹¹¹ –Cd2–O3	166.71(16)

Table S4. Selected Bond distance (Å) and angle (°) data for **3**.

Symmetry codes to generate equivalent atoms: i: -x + 2, -y, -z + 1; ii: -x + 1, -y, -z + 1; iii: -x + 3, -y + 1, -z; iv: x + 1, y, z; v: x + 2, y + 1, z - 1; vi: x - 1, y, z.

Cd1–O4	2.3022(14)
Cd1–N1	2.3045(15)
Cd1-O3	2.3269(13)
O4 ⁱ -Cd1-O4	180.0
O4–Cd1–N1 ⁱ	85.90(5)
O4Cd1N1	94.11(5)
N1 ⁱ -Cd1-N1	180.0
N1–Cd1–O3 ⁱ	87.36(5)
O4 ⁱ -Cd1-O3	90.36(5)
O4Cd1O3	89.64(5)
N1-Cd1-O3	92.64(5)
O3 ⁱ -Cd1-O3	180.0

Table S5. Selected Bond distance (Å) and angle (°) data for 4.

Symmetry code to generate equivalent atoms: *i*: -x, -y, -z.

Infrared Spectral Bands for 1–4:

1: IR (cm⁻¹): 3224 (m, br), 2968 (m, br), 2229 (w, br), 1645 (w), 1586 (m), 1543 (s), 1417 (m), 1384 (s), 1230 (m), 1058 (m), 1021 (m), 887 (w), 864 (w), 820 (w), 769 (s), 687 (s), 665 (s).

2: IR (cm⁻¹): 3361 (m, br), 1687 (w), 1609 (s), 1584 (m), 1547 (s), 1486 (m), 1395 (s), 1335 (m), 1307 (m), 1263 (w), 1196 (s), 1158 (w), 1119 (w), 1098 (w), 1048 (m), 1033 (m), 930 (w), 862 (s), 799 (w), 767 (s), 716 (s), 702 (s).

3: IR (cm⁻¹): 3224 (m, br), 1673 (w), 1609 (s), 1585 (w), 1541 (s), 1395 (s), 1307 (m), 1263 (w), 1196 (m), 1157 (w), 1118 (w), 1098 (w), 1048 (m), 1032 (m), 863 (s), 796 (w), 769 (s), 716 (s), 702 (s).

4: IR (cm⁻¹): 3066 (w, br), 1692 (m), 1595 (s), 1516 (s), 1431 (w), 1385 (m), 1335 (m), 1310 (s), 1275 (m), 1214 (s), 1130 (m), 1030 (w), 1016 (m), 964 (w), 900 (w), 834 (s), 729 (s), 698 (s).

Figure S1. Stacking diagram for coordination polymer ribbons in **1**, viewed down the *a* crystal axis.

Figure S2. Stacking diagram for coordination polymer layers in **3**.

Figure S3. Stacking of coordination polymer chains in **4**. Hydrogen bonding is shown as dashed lines.

Figure S4. Emission spectrum of **1**.

Figure S6. Emission spectrum of **3**.

Figure S7. Emission spectrum of **4**.

Figure S8. TGA trace for 1.

Figure S9. TGA trace for **2**.

Figure S10. TGA trace for **3**.

Figure S11. TGA trace for 4.

