Supporting Information

Exploration and Synthesis of Condensed Coordination Networks with modified Magnetic Properties

Susanne Wöhlert^a, Lothar Fink^b, Martin Schmidt^b and Christian Näther^{*a}

^a Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Straße 2, 24118 Kiel, Germany. Fax: +49 431-880 1520; Tel: +49 431-880 1520; *E-mail:cnaether@ac.uni-kiel.de

^b Institut für Anorganische und Analytische Chemie, Johann Wolfgang Goethe Universität, Max-von-Laue-Str. 7, 60438 Frankfurt am Main.

Figure S1	Measured and calculated XRPD pattern of compound 2	2
Figure S2	Measured and calculated XRPD pattern XRPD of compound 3	2
Figure S3	Measured and calculated XRPD pattern XRPD of compound 4	3
Figure S4	Measured and calculated XRPD pattern XRPD of compound 5	3
Figure S5	ORTEP plot of compound 1	4
Figure S6	ORTEP plot of compound 2	5
Figure S7	ORTEP plot of compound 3	6
Figure S8	ORTEP plot of compound 4	7
Figure S9	ORTEP plot of compound 5	8
Figure S10	Measured and calculated XRPD pattern XRPD of compound 6	9
Figure S11	ORTEP plot of compound 6	10
Figure S12	ORTEP plot of compound 8	11
Figure S13	DTG, TG and DTA curves for 2 and 3	12
Table S1	Experimental and calculated mass loss for 2 and 3	12
Figure S14	DTG, TG and DTA curves for 4 and 5	13
Table S2	Experimental and calculated mass loss for 4 and 5	13
Figure S15	IR spectrum of 2	14
Figure S16	IR spectrum of 3	14
Figure S17	IR spectrum of 4	15
Figure S18	IR spectrum of 5	15
Figure S19	Difference plot of compound 7	16
Figure S20	Magnetic measurements of 2, 3, 4 and 5	17
Figure S21	Magnetic measurements of 7	18
Figure S22	Magnetic measurements of 7	18
Figure S23	X-ray powder investigations on the resolvation behavior of 4	19
Figure S24	X-ray powder investigations on the resolvation behavior of 5	19
Figure S25	IR spectrum of the residue obtained after the first TG step of 2	20
Figure S26	IR spectrum of the residue obtained after the first TG step of 3	20
Figure S27	IR spectrum of the residue obtained after the first TG step of 4	21
Figure S28	IR spectrum of the residue obtained after the first TG step of 5	21
Figure S29	IR spectrum of the residue obtained after the second TG step of 2	22
Figure S30	IR spectrum of the residue obtained after the second TG step of 3	22
Figure S31	IR spectrum of the residue obtained after the second TG step of 4	23
Figure S32	IR spectrum of the residue obtained after the second TG step of 5	23

Figure S1. Experimental XRPD of **2** (A) and calculated XRPD from single-crystal data of $Ni(NCS)_2(2-methylpyrazine)_4 \cdot 2-methylpyrazine solvate ($ **2**) (B).

Figure S2. Experimental XRPD of **3** (A) and calculated XRPD from single-crystal data of Ni(NCS)₂(2-methylpyrazine)₄·ethanol solvate (**3**) (B).

Figure S3. Experimental XRPD of **4** (A) and calculated XRPD for the literature known compound $Ni(NCS)_2(2$ -methylpyrazine)_2(H₂O)_2 (**4**) (B).

Figure S4. Experimental XRPD of **5** (A) and calculated XRPD from single-crystal data of Ni(NCS)₂(2-methylpyrazine)₂(CH₃OH)₂ (**5**) (B).

Figure S5. Crystal structure of $Ni(NCS)_2(2$ -methylpyrazine)₄ (1) with view of the coordination sphere of the nickel(II) cation with labeling and displacement ellipsoids drawn at 50 % probability level.

Figure S6. Crystal structure of $Ni(NCS)_2(2-methylpyrazine)_4\cdot 2-methylpyrazine solvate (2) with view of the coordination sphere of the nickel(II) cation with labeling and displacement ellipsoids drawn at 50 % probability level.$

Figure S7. Crystal structure of Ni(NCS)₂(2-methylpyrazine)₄·ethanol solvate (**3**) with view of the coordination sphere of the nickel(II) cation with labeling and displacement ellipsoids drawn at 50 % probability level.

Figure S8. Crystal structure of Ni(NCS)₂(2-methylpyrazine)₂(H₂O)₂ (**4**) with view of the coordination sphere of the nickel(II) cation with labeling and displacement ellipsoids drawn at 50 % probability level. Symmetry code: A = -x, -y, -z + 1.

Figure S9. Crystal structure of Ni(NCS)₂(2-methylpyrazine)₂(CH₃OH)₂ (**5**) with view of the coordination sphere of the nickel(II) cation with labeling and displacement ellipsoids drawn at 50 % probability level. Symmetry code: A = -x + 1, -y + 1, -z.

Figure S10. Experimental XRPD of **6** (B) (the reflections of the 1:2:2 compound $Ni(NCS)_2(2-methylpyrazine)_2(H_2O)_2$ (**4**) are indicated by stars) and calculated XRPD from single-crystal data of $[Ni(NCS)_2(2-methylpyrazine)_4 \cdot Ni(NCS)_2(2-methylpyrazine)_3(H_2O)]$ (**6**; C) together with the calculated XRPD from single-crystal data of $Ni(NCS)_2(2-methylpyrazine)_2(H_2O)_2$ (**4**; A).

Figure S11. Crystal structure of $[Ni(NCS)_2(2-methylpyrazine)_4 \cdot Ni(NCS)_2(2-methylpyrazine)_3(H_2O)]$ (6) with view of the coordination sphere of the nickel(II) cation with labeling and displacement ellipsoids drawn at 50 % probability level. The hydrogen atoms were omitted for clarity.

Figure S12. Crystal structure of $[Ni(NCS)_2(2-methylpyrazine)]_n$ (8) with view of the coordination sphere of the nickel(II) cation with labeling and displacement ellipsoids drawn at 50 % probability level. Symmetry codes: A = x, y - 1, z; B = -x, -y + 2, -z + 1; C = -x, -y + 1, -z + 1; D = -x + 1, -y + 1, -z + 1; E = -x + 1, -y, -z + 1; F = x, y + 1, z.

Figure S13. DTA, DTG and TG curves of the ligand-rich 1:5 compounds Ni(NCS)₂(2methylpyrazine)₄·2-methylpyrazine solvate (2) (left) and Ni(NCS)₂(2methylpyrazine)₄·ethanol solvate (3) (right). Heating rate = 4°C/min; given are the peak temperatures T_P in °C and the mass loss in %.

Table S1. Experimental and calculated mass losses of the ligand-rich 1:5 compounds: $Ni(NCS)_2(2-methylpyrazine)_4 \cdot 2-methylpyrazinesolvate(2)and<math>Ni(NCS)_2(2-methylpyrazine)_4 \cdot 2-methylpyrazinemethylpyrazine)_4 \cdot ethanol solvate(3).$

	2		3
Δm_{exp} (1. step)	43.9	Δm_{exp} (1. step)	34.9
Δm_{calc} (-3x2-methylpyrazine)	43.8	Δm_{calc} (-2x2-methylpyrazine)	31.50
Δm_{exp} (2. step)	14.7	Δm_{exp} (2. step)	14.2
Δm_{calc} (-1x2-methylpyrazine)	14.6	Δm_{calc} (-1x2-methylpyrazine)	15.7
Δm_{exp} (3. step)	14.3	Δm_{exp} (3. step)	16.9
Δm_{calc} (-1x2-methylpyrazine)	14.6	Δm_{calc} (-1x2-methylpyrazine)	15.7

12

Figure S14. DTA, DTG and TG curves of the ligand-rich 1:2:2 compounds Ni(NCS)₂(2methylpyrazine)₂(H₂O)₂ (**4**) (left) and Ni(NCS)₂(2-methylpyrazine)₂(CH₃OH)₂ (**5**) (right). Heating rate = 4°C/min; given are the peak temperatures T_P in °C and the mass loss in %.

Table S2. Experimental and calculated mass losses of the ligand-rich 1:2:2 compounds: $Ni(NCS)_2(2-methylpyrazine)_2(H_2O)_2$ (4) and $Ni(NCS)_2(2-methylpyrazine)_2(CH_3OH)_2$ (5).

	4		5
Δm_{exp} (1. step)	10.8	Δm_{exp} (1. step)	14.5
Δm_{calc} (-2 H ₂ O)	9.01	Δm_{calc} (-2 CH ₃ OH)	14.9
Δm_{exp} (2. step)	22.4	Δm_{exp} (2. step)	21.9
Δm_{calc} (-1x2-methylpyrazine)	23.5	Δm_{calc} (-1x2-methylpyrazine)	23.5
Δm_{exp} (3. step)	24.7	Δm_{exp} (3. step)	24.2
Δm_{calc} (-1x2-methylpyrazine)	23.5	Δm_{calc} (-1x2-methylpyrazine)	23.5

Figure S15. IR spectrum of the ligand-rich compound $Ni(NCS)_2(2-methylpyrazine)_4 \cdot 2-$ methylpyrazine solvate (**2**).

Figure S16. IR spectrum of the ligand-rich compound Ni(NCS)₂(2-methylpyrazine)₄·ethanol solvate (**3**).

Figure S17. IR spectrum of the ligand-rich 1:2:2 compound $Ni(NCS)_2(2-methylpyrazine)_2(H_2O)_2$ (4).

Figure S18. IR spectrum of the ligand-rich 1:2:2 compound $Ni(NCS)_2(2-methylpyrazine)_2(CH_3OH)_2$ (5).

Figure S19. Difference plot of the Rietveld refinement of compound $[Ni(NCS)_2(2-methylpyrazine)_2]_n$ (7).

Figure S20. Plots of paramagnetic susceptibility and reciprocal paramagnetic susceptibility (A, C, E, G) and $\chi_M T$ (B, D, F, H) as function of temperature for the 2-methylpyrazine-rich compounds Ni(NCS)₂(2-methylpyrazine)₄·2-methylpyrazine solvate (**2**) (A, B),[Ni(NCS)₂(2-methylpyrazine)₄·ethanol solvate (**3**) (C, D), Ni(NCS)₂(2-methylpyrazine)₂(H₂O)₂ (**4**) and Ni(NCS)₂(2-methylpyrazine)₂(CH₃OH)₂ (**5**) (E, F) and (G, H).

Figure S21. Results of the magnetic measurements for 7: and $\sqrt{8}(\chi T)$ (left) and χT (right) as function of temperature (at $H_{DC} = 1$ kOe).

Figure S22. Magnetization experiment at T = 2 K in range of $H = \pm 90$ kOe.

Figure S23. Experimental XRPD of **7** (A) obtained in the first TG step of the thermal decomposition reaction of **4**, which was stored for 1 d in a saturated water atmosphere (B) together with the calculated XRPD of compound Ni(NCS)₂(2-methylpyrazine)₂(H₂O)₂ (C).

Figure S24. Experimental XRPD of **7** (A) obtained in the first TG step of the thermal decomposition reaction of **5**, which was stored for 1 d in a saturated methanol atmosphere (B) together with the calculated XRPD of compound Ni(NCS)₂(2-methylpyrazine)₂(CH₃OH)₂ (C).

Figure S25. IR spectrum of the residue obtained after the first TG step of the thermal decomposition reaction of **2**.

Figure S26. IR spectrum of the residue obtained after the first TG step of the thermal decomposition reaction of **3**.

Figure S27. IR spectrum of the residue obtained after the first TG step of the thermal decomposition reaction of **4**.

Figure S28. IR spectrum of the residue obtained after the first TG step of the thermal decomposition reaction of **5**.

Figure S29. IR spectrum of the residue obtained after the second TG step of the thermal decomposition reaction of **2**.

Figure S30. IR spectrum of the residue obtained after the second TG step of the thermal decomposition reaction of **3**.

Figure S31. IR spectrum of the residue obtained after the second TG step of the thermal decomposition reaction of **4**.

Figure S32. IR spectrum of the residue obtained after the second TG step of the thermal decomposition reaction of **5**.