Supporting Information

Mn(II) Metal-Organic Frameworks Based on Mn₃ Clusters: From 2D

Layer to 3D Framework by the "Pillaring" Approach

Yong-Qiang Chen, Sui-Jun Liu, Yun-Wu Li, Guo-Rong Li, Kun-Huan He, Ze Chang* and Xian-He Bu

Department of Chemistry, Tianjin Key Lab on Metal and Molecule-based Material Chemistry, Nankai University, Tianjin 300071, China

* Corresponding author. E-mail: <u>changze@nankai.edu.cn</u>. Fax: +86-22-23498361.

Table S1. Selected bond distances (Å) and angles (°) for complexes 1 and 2				
1				
Mn(1)–O(1)	2.222(3)	Mn(2)–O(1)	2.274(3)	
Mn(2)–O(2)	2.252(3)	Mn(1)#1-O(3)	2.102(3)	
Mn(2)#1-O(4)	2.061(3)	Mn(2)#2–O(5)	2.195(3)	
Mn(2)#2–O(6)	2.308(3)	Mn(1)–O(7)	2.197(4)	
Mn(2)–O(11)	2.193(4)	Mn(1)–O(7)#5	2.197(4)	
Mn(1)–O(3)#4	2.102(4)	Mn(1)–O(3)#5	2.102(4)	
Mn(1)–O(1)#5	2.222(3)	Mn(2)–O(4)#3	2.061(3)	
Mn(2)-O(5)#6	2.195(3)	Mn(2)–O(6)#6	2.308(3)	
Mn(1)-O(1)-Mn(2)	112.06(13)	O(7)-Mn(1)-O(3)#4	92.63(17)	
O(7)#3-Mn(1) -O(3)#4	87.37(17)	O(7)#3-Mn(1)-O(3)#5	92.63(17)	
O(7)-Mn(1)-O(1)	90.47(15)	O(7)#3-Mn(1)-O(1)	89.53(15)	
O(3)#4-Mn(1)-O(1)	85.29(15)	O(3)#5-Mn(1)-O(1)	94.71(15)	
O(7)-Mn(1)-O(1)#3	89.53(15)	O(7)#3-Mn(1)-O(1)#3	90.47(15)	
O(3)#4-Mn(1)-O(1)#3	94.71(15)	O(3)#5-Mn(1)-O(1)#3	85.29(15)	
O(4)#4-Mn(2)-O(11)	96.30(18)	O(4)#4-Mn(2)-O(5)#6	104.95(17)	
O(11)-Mn(2)-O(5)#6	91.76(17)	O(4)#4-Mn(2)-O(2)	159.25(17)	
O(11)-Mn(2)-O(2)	86.95(17)	O(5)#6-Mn(2)-O(2)	95.40(16)	
2				
Mn(1)–O(1)	2.109(4)	Mn(1)–N(1)	2.242(5)	
Mn(1)-O(6)#2	2.341(4)	Mn(2)#3-O(2)	2.060(4)	
Mn(2)–O(3)	2.054(4)	Mn(2)#4–O(5)	2.230(4)	
Mn(2)#4–O(6)	2.325(4)	Mn(2)#6–N(2)	2.185(5)	
O(1)#1-Mn(1)-N(1)	93.91(16)	O(1)-Mn(1)-N(1)	86.09(16)	
O(1)#1-Mn(1)-O(6)#2	93.50(15)	O(1)-Mn(1)-O(6)#2	86.50(15)	
N(1)-Mn(1)-O(6)#2	94.20(17)	N(1)#1-Mn(1)-O(6)#2	85.80(17)	
Mn(2)#4-O(6)-Mn(1)#5	110.10(16)	O(3)-Mn(2)-O(2)#7	103.38(18)	

O(3)-Mn(2)-N(2)#8	99.49(18)	O(2)#7-Mn(2)-N(2)#8	99.68(18)
O(3)-Mn(2)-O(5)#9	97.57(19)	O(2)#7-Mn(2)-O(5)#9	157.14(17)
N(2)#8-Mn(2)-O(5)#9	85.63(18)	O(3)-Mn(2)-O(6)#9	129.66(17)
O(2)#7-Mn(2)-O(6)#9	101.43(15)	N(2)#8-Mn(2)-O(6)#9	118.51(17)
O(5)#9-Mn(2)-O(6)#9	57.30(15)		

*Symmetry modes: 1: #1 x + 2, y, z - 1, #2 x + 1, y + 1, z, #3 - x - 2, - y - 1, - z + 2, #4 x - 2, y, z + 1, #5 - x, - y - 1, - z + 1, #6 x - 1, y - 1, z; 2: #1 - x - 1, - y + 1, - z + 1, #2 x - 2, y, z + 1, #3 x - 1, y + 1, z + 1, #4 x + 1, y + 1, z, #5 x + 2, y, z - 1, #6 x, y, z + 1, #7 x + 1, y - 1, z - 1, #8 x, y, z - 1, #9 x - 1, y - 1, z.

Figure S1. The *M* vs. *H* plots for 1 (a) and 2 (b) measured at 2 K.

The isotropic Heisenberg spin Hamiltonian:

$$\chi_M T = \frac{Ng^2 \beta^2}{3k} \frac{\sum_{S_B, S_T} S_T (S_T + 1)(2S_T + 1) \exp[-\frac{E(S_B, S_T)}{kT}]}{\sum_{S_B, S_T} (2S_T + 1) \exp[-\frac{E(S_B, S_T)}{kT}]} = \frac{Ng^2 \beta^2}{k}$$

 $\frac{8.75 + 2.5 \exp(-5 x) + 21 \exp(-7 x) + 9 \exp(-10 x) + 2.5 \exp(-13 x) + 41.5 \exp(-16 x) + 21 \exp(-17 x) + 8.75 \exp(-18 x) + 2.5 \exp(-19 x)}{3 + 2 \exp(-5 x) + 4 \exp(-7 x) + 4 \exp(-10 x) + 2 \exp(-13 x) + 6 \exp(-16 x) + 4 \exp(-17 x) + 3 \exp(-18 x) + 2 \exp(-19 x)}$

$$\frac{2.5 \exp(-23x) + 8.75 \exp(-24x) + 21 \exp(-25x) + 41.25 \exp(-26x) + 71.5 \exp(-27x) + 8.75 \exp(-28x) + 8.75 \exp(-30x)}{2 \exp(-23x) + 3 \exp(-24x) + 4 \exp(-25x) + 5 \exp(-26x) + 6 \exp(-27x) + 3 \exp(-28x) + 3 \exp(-30x)}$$

 $\frac{21\exp(-31x) + 41.25\exp(-34x) + 21\exp(-35x) + 71.5\exp(-37x) + 155\exp(-40x) + 71.5\exp(-45x) + 113.75\exp(-50x) + 170\exp(-55x) + 4\exp(-31x) + 5\exp(-34x) + 4\exp(-35x) + 6\exp(-37x) + 12\exp(-40x) + 6\exp(-45x) + 7\exp(-50x) + 8\exp(-55x) + 6\exp(-55x) + 6\exp(-55x$

Figure S2. The simulative (red line) and experimental (black line) powder X-ray diffraction pattern for complex 1.

Figure S3. The simulative (red line) and experimental (black line) powder X-ray diffraction pattern for complex **2**.

Figure S4. The TG curve of complex 1.

Figure S5. The TG curve of complex 2.