Facile synthesis of CaO-SnO₂ nanocrystalline composites

rods by electrospinning method with enhanced gas sensitive

performance at room temperature

Chao Jiang, Shuang Xu, Guo Zhang, Li Li, Ying Yang, Keying Shi* Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education. Key Laboratory of Physical Chemistry, School of Chemistry and Chemical Engineering, Heilongjiang University, Harbin 150080, People's Republic of China *Corresponding author. Tel.: +86 451 86609141; +86 451 86609141

E-mail address: shikeying2008@yahoo.cn (K. Y. Shi).

Fig. S1 SEM images of CaO-SnO₂ composites nanorods with different atomic ratios (a~a₂: Sn:Ca=100:4; b~b₂: Sn:Ca=100:8;)(a and b The fibers before calcination; a₁, a₂, b₁ and b₂ The fibers after calcination at 600°C for 5 h)

Fig. S2 TEM images of $CaO-SnO_2$ composites nanorods with different atomic ratios a) Sn:Ca=100:4; b) Sn:Ca=100:8.

Fig. S3 Dynamic response-recovery curves of CaO-SnO₂ composites nanorods with different atomic ratios to 97 ppm-9.7 ppb NO_x at room temperature in air. a) Sn:Ca=100:4; b) Sn:Ca=100:8. (temperature 22 $^{\circ}$ C; humidity 42 %)

Table S1 Comparison of the response-recovery results of CaO-SnO₂ composites nanorods with different atomic ratios to NO_x (temperature 22 $^{\circ}$ C; humidity 42 %)

		A L				, , ,								
Volume	97	69.7	48.5	19.4	9.7	4.85	1.94	0.97	485	194	97	4.85	19.4	9.7
concentration	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppb	ppb	ppb	ppb	ppb	ppb
response (100:0)	3.49	2.31	1.92	1.08	0.66	0.39	0.24	0.19						
response (100:2)	6.63	5.0	4.55	3.13	2.32	1.82	1.17	0.66	0.45	0.37	0.33	0.26	0.17	0.11
response (100:4)	1.00	0.84	0.62	0.22	0.13	0.12								
response (100:8)	0.74	0.60	0.43	0.18	0.18	0.12								

Fig. S4 NO_x calibration curve of the CaO-SnO₂ composites nanorods sensor. (a: Sn:Ca=100:4; b: Sn:Ca=100:8)

Fig. S5 The 2 at.% CaO-SnO₂ L-NRs with sensor response to various gases.