Electronic Supplementary Information

Solvent effects on halogen bond symmetry

Anna-Carin C. Carlsson, Martin Uhrbom, Alavi Karim, Ulrika Brath, Jürgen Gräfenstein and Máté Erdélyi*

Department of Chemistry and Molecular Biology and the Swedish NMR Centre, University of Gothenburg, Kemivägen 10, SE-412 96 Gothenburg, Sweden. E-mail: mate@chem.gu.se

Table of Contents

1 Synthesis of [N-X-N] ⁺ OTf Complexes	S3
1.1 General Information	S 3
1.2 Bis(pyridine)bromonium triflate $(1-d_0/1-d_1)$	S4
1.3 Bis(pyridine)iodonium triflate $(2-d_0/2-d_1)$	S4
1.4 Pyridine-pyridinium triflate $(3-d_0/3-d_1)$	S5
2 IPE NMR Experiments	S7
2.1 General Experimental Information	S 7
2.2 ¹ H and ¹³ C NMR Spectra in CD ₃ CN	S 8
2.3 ¹³ C NMR Chemical Shifts, Observed Isotope Shifts, and Temperature Coefficients	S12
3 Computational Details: Geometry Optimization and Thermochemistry	S20
3.1 Equilibrium Geometries and Selected Charges	S21
3.2 Cartesian Coordinates, Thermochemistry Data, and Selected Vibrational Frequencie	es S22
3.2.1 Acetonitrile	S23

S31

3.2.2 Dichloromethane

1 Synthesis of [N-X-N]⁺ OTf Complexes

1.1 General Information

Unless otherwise stated, all reagents and solvent were purchased from commercial suppliers. CH₂Cl₂ was freshly distilled from CaH₂, and *n*-hexane was distilled from sodium metal/benzophenone ketyl prior to use. Pyridine was stored over KOH, and distilled from CaH_2 . Pyridine-2- d_1 was supplied by QMX Laboratories. All glassware was dried at 150 °C in a heating oven overnight or at least for several hours prior to use and all reactions were performed under dry conditions using dry solvents, and under nitrogen or argon atmosphere. Centrifugations were carried out with a Heraeus Christ Labofuge A centrifuge. Melting points were recorded on a Büchi B-545 apparatus and are uncorrected. ¹H NMR (500 MHz) and ¹³C NMR (125 MHz) spectra were recorded on a Varian VNMR-S 500 spectrometer at 25 °C in CD₂Cl_{2 and} CD₃CN. Chemical shifts are reported on the δ scale in ppm using residual solvent signal as internal standard; CD₃CN ($\delta_{\rm H}$ 1.94, $\delta_{\rm C}$ 118.26) and CD₂Cl₂ ($\delta_{\rm H}$ 5.32, $\delta_{\rm C}$ 54.00). For the ¹⁹F NMR spectra, a sealed capillary filled with hexafluorobenzene (δ_F -164.4) was used as an internal standard. The numbering used for NMR assignment is shown in Fig. 3 in the main text. Diffusion NMR measurements were performed on a Varian 500 MHz VNMR-S spectrometer using the ONE-SHOT pulse sequence¹ as implemented in the software VNMRJ version 3.2. Four scans were acquired using 60 s relaxation delay (d1), 2 ms diffusion-encoding/decoding gradient pulse duration and 25 ms diffusion delay. The z-gradient strengths were varied in 14 steps between 0 and 60 G/cm. Gradient strength was calibrated for the known diffusion coefficient of the residual water signal of a DMSO-d₆ sample.² Nitrogen chemical shifts were acquired using ¹H, ¹⁵N-gHMBCAD pulse sequence³ on a 400 MHz Varian-MR spectrometer equipped with a OneNMR probe. Chemical shifts were referenced to nitromethane at 0 ppm (capillary).

High resolution mass spectroscopy (HRMS) data were obtained on a Q-TOF-MS at Stenhagen Analyslab AB, Gothenburg, Sweden, with detection in the positive ion mode. Standard autotune of masses was performed in the TOF-MS instruments before the experimental runs, and typical mass errors of 1-3 ppm were achieved in the calibration. The syntheses of [N-X-N]⁺ OTf complexes **1** and **2** followed a previously published protocol.⁴

¹ Pelta, M. D., Morris, G. A., Stchedroff, J., Hammond, S. J. Magn. Reson. Chem., 2002, 40, S147.

² Packer, K. J., Tomlinson, D. J. Trans. Faraday. Soc., 1971, **67**, 1302.

³ (a) Bax, A., Summers, M. F. J. Am. Chem. Soc., 1986, **108**, 2093. (b) Hurd, R. E., J. Magn. Reson., 1990, **87**, 422. (c) Hadden, C. E., Magn. Reson. Chem. , 2005, **43**, 330.

⁴ Carlsson, A.-C.C; Gräfenstein, J.; Laurila, J. L.; Bergquist, J.; Erdélyi, M. Chem. Commun., 2012, 48, 1458.

1.2 Bis(pyridine)bromonium triflate $(1-d_0/1-d_1)$

Pyridine (150 µL, 1.86 mmol), pyridine-2- d_I (150 µL, 1.84 mmol), and silver triflate (453 mg, 1.76 mmol) were suspended in dry CH₂Cl₂ (6.0 mL) in a dried 20-mL vial sealed with a rubber septum (Biotage[®] high precision microwave vial) under stirring at room temperature below a nitrogen or argon atmosphere. When all solids were dissolved, and the mixture turned clear and colourless, a solution of bromine (0.58 M, 3.0 mL, 1.74 mmol) in dry CH₂Cl₂ was added dropwise using a syringe. Immediately, light yellow silver bromide precipitated. The reaction mixture was stirred vigorously for 15 min. The vial was then centrifuged for 7 min at 2000 rpm. The resulting yellow supernatant was transferred to another 20-mL vial, sealed with a rubber septum, and kept under nitrogen. Addition of dry *n*-hexane (12.0 mL) resulted in a light yellow precipitate. Precipitation was continued on an icebath for 50 min under nitrogen. Subsequently, the vial was centrifuged for 7 min at 2000 rpm. The supernatant was removed, and the remaining solid was washed twice with dry *n*-hexane (2 x 6.0 mL). Each washing step was followed by centrifugation for 7 min at 2000 rpm, and removal of the supernatant. After drying under vacuum, an isotopologue mixture of [N-Br-N]⁺ complexes **1**-*d*₀ and **1**-*d*₁ (and **1**-*d*₂) was furnished as a white, crystalline solid (614 mg, 90 %). Complexes **1**-*d*₀ and **1**-*d*₁ were obtained in an approximate ratio of 1:1.

¹H NMR (500 MHz, CD₂Cl₂) δ 8.73-8.76 (m, 3H, H–2, H–2', H-6 and H-6'), 8.21-8.26 (m, 2H, H–4 and H–4'), 7.72-7.78 (m, 4H, H–3, H-3', H–5 and H–5')(lit.² for **1-***d*₀); ¹H NMR (500 MHz, CD₃CN) δ 8.71-8.74 (m, 3H, H–2, H–2', H-6 and H-6'), 8.24-8.29 (m, 2H, H–4 and H–4'), 7.72-7.77 (m, 4H, H–3, H-3', H–5 and H–5'); ¹³C NMR (125 MHz, CD₂Cl₂) δ 146.9 (C–2, C–6 and C–6'), 146.6 (t, J = 29.3 Hz, C–6'), 142.7 (C–4 and C–4'), 128.2 (C–3, C–5 and C–5'), 128.1, (C–3'), 121.6 (q, J = 321.1 Hz, CF₃); ¹³C NMR (125 MHz, CD₃CN) δ 147.5 (C–2 and C–6), 147.4 (C–6'), 147.2 (t, J = 28.5 Hz, C–2'), 143.31 (C–4'), 143.29 (C–4), 128.7 (C–3, C–5 and C–5'), 128.6, (C–3'), 122.1 (q, J = 321 Hz, CF₃); ¹⁹F NMR (376 MHz, CD₂Cl₂) δ -77.27 (s, CF₃); mp 89 – 93 °C (lit.⁵ for **1-***d*₀ 87-89 °C).²</sup>

1.3 Bis(pyridine)iodonium triflate (2-*d*₀/2-*d*₁)

Pyridine (200 μ L, 2.48 mmol), pyridine-2-*d*₁ (100 μ L, 1.22 mmol), and silver triflate (460 mg, 1.79 mmol) were suspended in dry CH₂Cl₂ (7.0 mL) in a 20-mL vial (Biotage[®] high precision microwave vial), which was sealed with a rubber septum, under stirring at room temperature under nitrogen atmosphere. When all solids were dissolved a solution of iodine (457 mg, 1.80 mmol) in dry CH₂Cl₂ (8.0 mL) was added dropwise by syringe to the clear and colourless mixture. Immediately upon the addition, yellow silver iodide was precipitated. The reaction mixture was stirred vigorously for 15

⁵ A. A. Neverov, H. X. Feng, K. Hamilton and R. S. Brown, Brown, J. Org. Chem., 2003, 68, 3802.

min. Thereafter, the vial was centrifuged for 10 min at 2000 rpm. The resulting orange supernatant was transferred to a round-bottomed flask, and concentrated under reduced pressure. The remaining orange solid was re-dissolved in dry CH_2Cl_2 (4.0 mL), and transferred to another 20-mL vial that was sealed with a rubber septum, and kept under nitrogen. Addition of dry *n*-hexane (18 mL) to the dark, orange solution resulted in formation of a yellow precipitate. Precipitation was continued on an ice-bath for 2 h under nitrogen. Subsequently, the vial was centrifuged for 10 min at 2000 rpm. The red supernatant was removed, and the remaining solid was washed twice with dry *n*-hexane (2 x 12.0 mL). After drying under vacuum, an isotopologue mixture of [N-I-N]⁺ complexes 2-d₀ and 2-d₁ (and 2-d₂) was furnished as a beige, crystalline solid (631 mg, 81 %). Complexes 2-d₀ and 2-d₁ were obtained in an approximate ratio of 2:1.

¹H NMR (500 MHz, CD₂Cl₂) δ 8.78-8.81 (m, 3.5H, H–2, H–2', H-6 and H-6'), 8.20-8.25 (m, 2H, H–4 and H–4'), 7.62-7.66 (m, 4H, H–3, H–3', H–5 and H–5');

¹H NMR (500 MHz, CD₃CN) δ 8.74-8.83 (m, 3.5H, H–2, H–2', H-6 and H-6'), 8.21-8.29 (m, 2H, H–4 and H–4'), 7.58-7.68 (m, 4H, H–3, H-3', H–5 and H–5');

¹³C NMR (125 MHz, CD₂Cl₂) δ 150.06 (C–2 and C–6), 150.03 (C–6'), 149.73 (t, *J* = 29.3 Hz, C–2'), 142.68 (C–4'), 142.66 (C–4), 128.49 (C–3, C–5 and C–5'), 128.34 (C–3'), 121.54 (q, *J* = 320.7 Hz, CF₃);

¹³C NMR (125 MHz, CD₃CN, inverse gated ²H decoupling) δ 150.64 (C–2 and C–6), 150.61 (C–6'), 150.3 (C–2'), 143.21 (C–4'), 143.21 (C–4), 128.8 (C–3, C–5 and C–5'), 128.7, (C–3'), 122.1 (q, *J* = 321 Hz, CF₃);

¹⁹F NMR (376 MHz, CD₂Cl₂) δ -77.24 (s, CF₃); HRMS calcd for (C₁₀H₁₀N₂INa)⁺ *m/z* 307.9786, found 307.9873; mp 84 – 88 °C.

1.4 Pyridine-pyridinium triflate $(3-d_0/3-d_1)$

The **3**- $d_0/3$ - d_1 sample was prepared by mixing pyridine, pyridine-2- d_1 , and trifluoromethanesulfonic acid in CD₂Cl₂ or CD₃CN, adjusting the ¹³C chemical shifts until the mixture contained pyridine/TfOH in an approximate 2:1 ratio, based on a previous titration of pyridine with TfOH in CD₂Cl₂ or CD₃CN at 25 °C.

¹H NMR (500 MHz, CD₂Cl₂) δ 8.70-8.74 (m, 3.5H, H–2, H–2', H–6 and H–6'), 8.10-8.15 (m, 2H, H– 4 and H–4'), 7.66-7.70 (m, 4H, H–3, H–3', H–5 and H–5');

¹H NMR (500 MHz, CD₃CN) δ 8.61-8.66 (m, 3H, H–2, H–2', H–6 and H–6'), 8.11-8.17 (m, 2H, H–4 and H–4'), 7.64-7.69 (m, 4H, H–3, H–3', H–5 and H–5');

¹³C NMR (125 MHz, CD₂Cl₂) δ 146.30 (C–2 and C–6), 146.25 (C–6'), 145.97 (t, *J* = 28.3 Hz, C–2'), 141.92 (C–4'), 141.87 (C–4), 126.26 (C–5'), 126.24 (C–3 and C–5), 126.11 (C–3'), 121.05 (q, *J* = 319.4 Hz, <u>C</u>F₃).

¹³C NMR (125 MHz, CD₃CN, inverse gated ²H decoupling) δ 146.8 (C–2 and C–6), 146.7 (C–6'), 146.4 (C–2'), 142.54 (C–4'), 142.49 (C–4), 126.62 (C–5'), 126.60 (C–3 and C–5), 126.5 (C–3'), 121.9 (q, J = 321 Hz, <u>C</u>F₃).

2 IPE NMR Experiments

2.1 General Experimental Information

Isotopic perturbation of equilibrium (IPE) NMR experiments were recorded on a Varian VNMR-S 500 MHz spectrometer equipped with an X{HF} probe using ¹³C detection with simultaneous broadband ¹H and inverse-gated ²H decoupling. Dry NMR samples were prepared using pre-dried CD₃CN, by storing the solvent over molecular sieves overnight followed by ultrasonication in the presence of CaH₂ for one hour; CaH₂ was subsequently removed by ultracentrifugation. The NMR tubes were dried under high vacuum for several hours before use. Spectra of mixtures of the nondeuterated and monodeuterated compounds **1**-*d*₀/**1**-*d*₁, **2**-*d*₀/**2**-*d*₁, **3**-*d*₀/**3**-*d*₁ and pyridine-*d*₀/pyridine-*d*₁, were recorded for CD₂Cl₂ solutions as described earlier, ⁴ and for CD₃CN solutions for the temperature interval -30 to +70 °C. To obtain high quality spectra for determination of small variations in isotopic shifts (ⁿΔ_{obs}) ¹³C spectra have been recorded with 32768 points and were zero-filled to 262144 points for processing. The spectral quality and the estimated chemical shift uncertainty are discussed in detail in the ESI of reference 4. The pyridine-*d*₀/pyridine-*d*₁ sample consisted of a mixture of pyridine with pyridine-2-*d*₁, the nondeuterated compound being in excess. Supplemented NMR spectra (¹H and ¹³C with ²H decoupling, section 2.2) were recorded at 25°C.

2.2 $^1\!H$ and $^{13}\!C$ NMR Spectra in CD_3CN

The ¹H and ¹³C NMR spectra of the compounds obtained for CD_2Cl_2 solutions are given in reference 4.

2.2.1 Bis(pyridine)bromonium triflate (1-d₀/1-d₁)

¹³C NMR spectrum (125 MHz, CD₃CN, inverse gated ²H decoupling)

2.2.2 Bis(pyridine)iodonium triflate $(2-d_0/2-d_1)$

¹H NMR spectrum (500 MHz, CD₃CN)

¹³C NMR spectrum (125 MHz, CD₃CN, inverse gated ²H decoupling)

154 152 150 148 146 144 142 140 138 136 134 132 130 128 126 124 122 120 118 116 114 112 110 10: f1 (ppm) 2.2.3 Pyridine-pyridinium triflate (3-d₀/3-d₁)

¹³C NMR spectrum (125 MHz, CD₃CN, inverse gated ²H decoupling)

2.2.4 Pyridine-d₀/Pyridine-d₁

¹³C NMR spectrum (125 MHz, CD₃CN, inverse gated ²H decoupling)

62 160 158 156 154 152 150 148 146 144 142 140 138 136 134 132 130 128 126 124 122 120 118 116 114 112 110 f1 (ppm)

2.3. ¹³C NMR Chemical Shifts, Observed Isotope Shift, and Temperature Coefficients

Bis(pyridine)bromonium triflate $(1-d_0/1-d_1)$

$$\begin{array}{c}
5 \\
6 \\
N \\
Br \\
0 \\
S' \\
4' \\
1 - d_d 1 - d_1
\end{array}$$

Table S1. The chemical shifts of bis(pyridine)bromonium triflate $(1-d_0/1-d_1)$ given in ppm.

Temp.	δ	δ	δ	δ	δ	δ	δ	δ
(°C)	C2 _H ,6 _H	C6 _D	C2 _D	$C4_{H}$	C4 _D	С3 _н ,5 _н	C5 _D	C3 _D
70	147.9741	147.9478	147.6680	143.6526	143.6713	129.0701	129.0701	128.9357
50	147.7513	147.7229	147.4424	143.4963	143.5130	128.9148	128.9148	128.7781
25	147.4686	147.4379	147.1593	143.2912	143.3093	128.7057	128.7057	128.5646
0	147.2024	147.1790	146.8915	143.0804	143.0893	128.4900	128.4900	128.3457
-20	147.0155	146.9838	146.7027	142.8694	142.8929	128.3154	128.3154	128.1687
-25	146.9948	146.9636	146.6808	142.8514	142.8685	128.3030	128.3030	128.1556
-30	146.9417	146.9103	146.6281	142.8112	142.8299	128.2594	128.2594	128.1115

Table S2. The temperature dependence of the isotope shifts observed for bis(pyridine)bromonium triflate $(1-d_0/1-d_1)$, given in ppm.

Temp.	$^{1}\Delta_{\rm obs}$	$^{3}\Delta_{\rm obs}$	$^{3}\Delta_{\rm obs}$	$^{2}\Delta_{\rm obs}$	$^{4}\Delta_{\rm obs}$
(°C)	$\delta_{C2D}\text{-}\delta_{C2H}$	δ_{C6D} - δ_{C6H}	$\delta_{C4D}\text{-}\delta_{C4H}$	$\delta_{C3D}\text{-}\delta_{C3H}$	$\delta_{C5D}\text{-}\delta_{C5H}$
70	-0.3061	-0.0263	0.0187	-0.1344	0.0000
50	-0.3089	-0.0284	0.0167	-0.1367	0.0000
25	-0.3093	-0.0307	0.0181	-0.1411	0.0000
0	-0.3109	-0.0234	0.0089	-0.1443	0.0000
-20	-0.3128	-0.0317	0.0235	-0.1467	0.0000
-25	-0.3140	-0.0312	0.0171	-0.1474	0.0000
-30	-0.3136	-0.0314	0.0187	-0.1479	0.0000

Figure S3. The temperature dependence of the isotope shifts of bis(pyridine)bromonium triflate $(1-d_0/1-d_1)$, shown for each carbon separately.

Bis(pyridine)iodonium triflate $(2-d_0/2-d_1)$

Table S3. The chemical shifts of bis(pyridine)iodonium triflate $(2-d_0/2-d_1)$ given in ppm.

Temp.	δ	δ	δ	δ	δ	δ	δ	δ
(°C)	C2 _H ,6 _H	C6 _D	C2 _D	C4 _H	C4 _D	C3 _H ,5 _H	C5 _D	C3 _D
40	150.7854	150.7211	150.4587	143.3353	143.3524	128.9446	128.9446	128.7988
25	150.6400	150.6144	150.3113	143.2112	143.2314	128.8216	128.8216	128.6735
10	150.4790	150.4495	150.1466	143.0813	143.1022	128.6829	128.6829	128.5330
0	150.3740	150.3435	150.0401	142.9986	143.0188	128.5920	128.5920	128.4413
-10	150.2692	150.2386	149.9340	142.9162	142.9378	128.5004	128.5004	128.3485
-15	150.2150	150.1838	149.8798	142.8740	142.8959	128.4527	128.4527	128.3002
-20	150.1627	150.1318	149.8272	142.8334	142.8551	128.4058	128.4058	128.2527
-25	150.0816	150.0500	149.7466	142.7641	142.7860	128.3317	128.3317	128.1779
-30	150.0528	150.0213	149.7171	142.7470	142.7685	128.3089	128.3089	128.1547

Table S4. The tem	perature dependence	of the isotope	shifts for bis(pyr	idine)iodonium trifla	ate $(2-d_0/2-d_1)$, given in ppm.
						, <u> </u>

Temp.	$^{1}\Delta_{\rm obs}$	$^{3}\Delta_{\rm obs}$	$^{3}\Delta_{\rm obs}$	$^{2}\Delta_{\rm obs}$	$^{4}\Delta_{\rm obs}$
(°C)	δ_{C2D} - δ_{C2H}	δ_{C6D} - δ_{C6H}	δ_{C4D} - δ_{C4H}	δ_{C3D} - δ_{C3H}	δ_{C5D} - δ_{C5H}
40	-0.3267	-0.0643	0.0171	-0.1458	0.0000
25	-0.3287	-0.0256	0.0202	-0.1481	0.0000
10	-0.3324	-0.0295	0.0209	-0.1499	0.0000
0	-0.3339	-0.0305	0.0202	-0.1507	0.0000
-10	-0.3352	-0.0306	0.0216	-0.1519	0.0000
-15	-0.3352	-0.0312	0.0219	-0.1525	0.0000
-20	-0.3355	-0.0309	0.0217	-0.1531	0.0000
-25	-0.3350	-0.0316	0.0219	-0.1538	0.0000
-30	-0.3357	-0.0315	0.0215	-0.1542	0.0000

Figure S4. The temperature dependence of the isotope shifts of bis(pyridine)iodonium triflate $(2-d_0/2-d_1)$, shown for each carbon separately.

Pyridine-pyridinium triflate $(3-d_0/3-d_1)$

$$\begin{array}{c}
 4 \\
 5 \\
 6 \\
 N \\
 6 \\
 N \\
 7 \\
 N \\
 7 \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 4' \\
 3' \\
 3' \\
 4' \\
 3' \\
 3' \\
 3' \\
 3' \\
 3' \\
 3' \\
 3' \\
 3' \\
 3' \\
 3' \\
 3' \\
 3' \\
 3' \\
 3' \\
 3' \\
 3' \\
 3' \\
 3' \\
 3' \\
 3' \\
 3' \\
 3' \\
 3' \\
 3' \\
 3' \\
 3' \\
 3' \\
 3' \\
 3' \\
 3' \\
 3' \\
 3' \\
 3' \\
 3' \\
 3' \\
 3' \\
 3' \\
 3' \\
 3' \\
 3' \\
 3' \\
 3' \\
 3' \\
 3' \\
 3' \\
 3' \\
 3' \\
 3' \\
 3' \\
 3' \\
 3' \\
 3' \\
 3' \\
 3' \\
 3' \\
 3' \\
 3' \\$$

Table S5. The chemical shifts of pyridine-pyridinium triflate $(3-d_0/3-d_1)$ given in ppm.

Temp. (°C)	δ C2 _H ,6 _H	δ C6 _D	δ C2 _D	δ C4 _H	δ C4 _D	δ C3 _H ,5 _H	δ C5 _D	δ C3 _D
33	146.8613	146.8082	146.5317	142.5409	142.5887	126.6766	126.6958	126.5502
23	146.7597	146.7059	146.4288	142.4912	142.5395	126.6037	126.6228	126.4763
-10	146.4109	146.3562	146.0798	142.3611	142.4085	126.3763	126.3951	126.2446
-15	146.3509	146.2960	146.0198	142.3466	142.3935	126.3416	126.3602	126.2093
-20	146.2883	146.2336	145.9579	142.3326	142.3795	126.3063	126.3245	126.1732
-25	146.2213	146.1664	145.8900	142.3189	142.3653	126.2689	126.2874	126.1362
-33	146.1606	146.1056	145.8299	142.3076	142.3538	126.2358	126.2539	126.1011

Table S6. The temperature dependence of the isotope shifts for pyridine-pyridinium triflate $(3-d_0/3-d_1)$, given in ppm.

Temp.	$^{1}\Delta_{\rm obs}$	$^{3}\Delta_{\rm obs}$	$^{3}\Delta_{\rm obs}$	$^{2}\Delta_{\rm obs}$	$^{4}\Delta_{\rm obs}$
(°C)	δ_{C2D} - δ_{C2H}	δ_{C6D} - δ_{C6H}	δ_{C4D} - δ_{C4H}	δ_{C3D} - δ_{C3H}	δ_{C5D} - δ_{C5H}
33	-0.3296	-0.0531	0.0478	-0.1264	0.0192
23	-0.3309	-0.0538	0.0483	-0.1274	0.0191
-10	-0.3311	-0.0547	0.0474	-0.1317	0.0188
-15	-0.3311	-0.0549	0.0469	-0.1323	0.0186
-20	-0.3304	-0.0547	0.0469	-0.1331	0.0182
-25	-0.3313	-0.0549	0.0464	-0.1327	0.0185
-33	-0.3307	-0.0550	0.0462	-0.1347	0.0181

Figure S5. The temperature dependence of the isotope shifts of pyridine-pyridinium triflate $(3-d_0/3-d_1)$, shown for each carbon separately.

Pyridine-d₀/Pyridine-d₁

Table S7. The chemical shifts of pyridine/pyridine- d_1 given in ppm.

Temp.	δ	δ	δ	δ	δ	δ	δ	δ
(°C)	C2 _H ,6 _H	C6 _D	C2 _D	C4 _H	C4 _D	С3 _н ,5 _н	C5 _D	C3 _D
70	151.1473	151.1331	150.8185	137.1297	137.1297	125.0374	125.0505	124.9014
55	151.0073	150.9921	150.6785	137.0433	137.0433	124.9343	124.9457	124.7974
40	150.8697	150.8542	150.5384	136.9587	136.9587	124.8333	124.8444	124.6939
25	150.7291	150.7133	150.3962	136.8721	136.8721	124.7292	124.7414	124.5882
10	150.5938	150.5774	150.2597	136.7903	136.7903	124.6282	124.6409	124.4859
0	150.4998	150.4828	150.1651	136.7333	136.7333	124.5600	124.5732	124.4159
-10	150.4030	150.3857	150.0672	136.6756	136.6756	124.4886	124.5020	124.3436
-15	150.3558	150.3382	150.0186	136.6479	136.6479	124.4537	124.4670	124.3079
-30	150.2078	150.1901	149.8713	136.5606	136.5606	124.3447	124.3587	124.1977

Table S8. The temperature dependence of the isotope shifts for pyridine- d_1 given in ppm.

Temp.	$^{1}\Delta_{\mathrm{obs}}$	$^{3}\Delta_{\rm obs}$	$^{3}\Delta_{\rm obs}$	$^{2}\Delta_{\rm obs}$	$^{4}\Delta_{\rm obs}$
(°C)	$\delta_{C2D}\text{-}\delta_{C2H}$	$\delta_{C6D}\!\!-\!\!\delta_{C6H}$	$\delta_{C4D}\text{-}\delta_{C4H}$	$\delta_{C3D}\text{-}\delta_{C3H}$	$\delta_{C5D}\text{-}\delta_{C5H}$
70	-0.3288	-0.0142	0.0000	-0.1360	0.0131
55	-0.3288	-0.0152	0.0000	-0.1369	0.0114
40	-0.3313	-0.0155	0.0000	-0.1394	0.0111
25	-0.3329	-0.0158	0.0000	-0.1410	0.0122
10	-0.3341	-0.0164	0.0000	-0.1425	0.0125
0	-0.3347	-0.0170	0.0000	-0.1441	0.0132
-10	-0.3358	-0.0173	0.0000	-0.1450	0.0134
-15	-0.3372	-0.0176	0.0000	-0.1458	0.0133
-30	-0.3365	-0.0177	0.0000	-0.1470	0.0140

Figure S6. The temperature dependence of the isotope shifts of pyridine/pyridine- d_1 shown for each carbon separately.

3 Computational Details: Geometry Optimization and Thermochemistry

All calculations in this work were performed with the Gaussian09 program package.⁶ The computational protocol was kept identical to that in Refs. 7 and 8 as far as possible. Geometries were optimized with density functional theory (DFT) using the B3LYP exchange and correlation functional⁹ and the LANL08 basis set¹⁰ and LANL2DZ effective core potential (ECP)¹¹ for I and Br, Pople's 6-311++G(d,p) basis set^{12,13,14} for N and the H atom in the N-H-N bond of 3, and Pople's 6- $311G(d,p)^{12,13}$ basis set otherwise. This construction of the basis set ensures that the basis set (i) is of triple-zeta quality including polarization functions for all atoms, (ii) provides diffuse functions for all atoms involved in hydrogen or halogen bonds. At the same time, the size of the basis set is still tractable. However, the 6-311+G(d,p) basis set was used for all atoms in the triflate moiety to account for the anionic character of the triflate ion. Solvent effects were taken into account by the polarisable continuum model (PCM)¹⁵ with CH₂Cl₂ ($\epsilon = 8.93$) and CH₃CN ($\epsilon = 35.69$). To ensure proper convergence of the SCRF calculations in all cases, the cavity had to be constructed as solventexcluded surface (Gaussian 09 keyword: Surface=SES) with atomic radii from the all-atom universal force field (Gaussian 09 keyword: Radii=UA0), in distinction from the protocol used in Refs. 7 and 8. Hence, the results presented here for solution in CH₂Cl₂ differ slightly from those in Refs. 7 and 8. Natural atomic populations (NAP) were calculated with the natural-bond orbital (NBO) analysis package¹⁶ as implemented in Gaussian 09.

Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R.

Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.

⁷ A. C. Carlsson, J. Grafenstein, J. L. Laurila, J. Bergquist and M. Erdelyi, *Chem. Commun.*, 2012, **48**, 1458

⁶Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J.

⁸ A. C. Carlsson, J. Grafenstein, A. Budnjo, J. L. Laurila, J. Bergquist, A. Karim, R. Kleinmaier, U. Brath and M. Erdelyi, J. Am. Chem. Soc., 2012, **134**, 5706.

⁹ (a) A. D. Becke, *J. Chem. Phys.*, 1993, **98**, 5648; (b) C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B*, 1988, **37**, 785; (c) S. H. Vosko, L. Wilk and M. Nusair, *Can. J. Phys.*, 1980, **58**, 1200; (d) P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, *J. Phys. Chem.*, 1994, **98**, 11623.

¹⁰ L. E. Roy, P. J. Hay and R. L. Martin, J. Chem. Theory Comput., 2008, 4, 1029.

¹¹ (a) P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, **82**, 27; (b) P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, **82**, 284;(c) P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, **82**, 299.

¹² (a) R. Krishnan, J. S. Binkley, R. Seeger and J. A. Pople, *J. Chem. Phys.*, 1980, **72**, 650.

⁽b) M. M. Francl, W. J. Petro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees and J. A. Pople, *J. Chem. Phys.*, 1982, 77, 3654.

¹³ R. Krishnan, J. S. Binkley, R. Seeger and J. A. Pople, *J. Chem. Phys.*, 1980, **72**, 650.

¹⁴ T. Clark, J. Chandrasekhar, G.W. Spitznagel and P.v. R. Schleyer, J. Comp. Chem., 1983, 4, 294.

¹⁵ (a) B. Mennucci and J. Tomasi, *J. Chem. Phys.*, 1997, **106**, 5151; (b) M. Cossi, G. Scalmani, N. Rega and V. Barone, *J. Chem. Phys.*, 2002, **117**, 43.

¹⁶ A. E. Reed and F. Weinhold, *J. Chem. Phys.*, 1985, **83**, 1736. A. E. Reed, R. B. Weinstock, and F. Weinhold, *J. Chem. Phys.*, 1985, **83** 735.

DFT description of the three-center four-electron bonds in **1** and **2** is subtle due to the incomplete coverage of non-dynamic electron on the one hand and the self-interaction error on the other hand.^{17,18} The reliability of the applied DFT method for **1** and **2** was previously confirmed7 using second-order Møller-Plesset (MP2) perturbation theory¹⁹ and the same basis set as described in the previous paragraph, the details being given in reference 4.

3.1 Equilibrium Geometries and Selected Charges

Structu Solver	ire nt	Х	$d_{\text{N-X}}(1)$	$d_{\text{N-X}}(2)$ CH ₂ Cl ₂	$d_{ m N-N}$	$d_{\text{N-X}}(1)$	$d_{\text{N-X}}(2)$ CH ₃ CN	$d_{ m N-N}$
		Br	1.894			1.893		
	-	Ι	2.093 2.093			2.092		
X		Н	1.024 1.015			1.027		
	1	Br	2.139	2.139	4.278	2.139	2.139	4.278
×-2	2	Ι	2.301 2.302	2.301 2.302	4.602 4.604	2.301	2.301	4.602
\bigcirc	3	Н	1.078 1.069	1.678 1.733	2.755 2.802	1.076	1.689	2.765
	1	Br	2.140	2.140	4.280	2.140	2.140	4.280
	2	Ι	2.140	2.140	4.279 4.604	2.304	2.304	4.607
	3	Н	1.084 1.082	1.646 1.648	4.003 2.730 2.730	1.081	1.657	2.738
CH ₃								
 ×−×− ×−×		Br I				2.060 2.228	2.060 2.228	4.120 4.456
CH ₃		Br I				1.940 2.180	2.470 2.450	4.410 4.630

Table S7. Computationally predicted N-X and N-N distances [Å] for the equilibrium geometries of **1**, **2**, and **3**.^a

(a) Values in italics are from Ref. 7, the differences are due to the different construction of the cavity in the PCM calculations.

¹⁷ See e.g. A. D. Becke, J. Chem. Phys., 2003, **119**, 2972.

¹⁸ See e.g. J. Gräfenstein and D. Cremer, *Theor. Chem. Accounts*, 2009, **123**, 171.

¹⁹ C. Møller and M. S. Plesset, *Phys. Rev.*, 1934, **46**, 618.

3.2 Cartesian Coordinates, Thermochemistry Data, and Selected Vibrational Frequencies

Energies are given in Hartree units unless otherwise stated, coordinates in Ångström, vibrational frequencies in cm⁻¹. E(e) denotes the electronic energy (without ZPE), E(298), H(298), and G(298) the energy (including vibrational corrections), enthalpy, and Gibbs free energy at 298.15 K and 1 atm.

Only selected vibrational frequencies are given, in particular: all imaginary frequencies, small frequencies that indicate the geometric stability of a compound, and the frequencies for the N–X–N stretching vibrations. For complexes with symmetric N–X–N geometry, the frequencies are labeled as (s) = symmetric or (a) = antisymmetric.

For a number of compounds, several geometries are given, referring to non-global minima or transition state. For the compounds used in the thermochemical calculations, the headline of the data block is underlined.

3.2.1 Acetonitrile

Cł	narge =	. 1	0 Multi	lpli	city = 1			
Ν	-		0.000000	-	0.000000		1.417595	
С			0.000000		1.144718		0.720561	
С			0.000000		1.197233	-	0.671396	
С			0.000000		0.000000	-	1.382054	
С			0.000000		-1.197233	-	0.671396	
С			0.000000		-1.144718		0.720561	
Η			0.000000		2.062091		1.303839	
Η			0.000000		2.154664	-	1.180600	
Η			0.000000		0.000000	-	2.467301	
Η			0.000000		-2.154664	-	1.180600	
Η			0.000000		-2.062091		1.303839	
	E(e)			=	-2	48.3	558104620	
	ZPE			=		0.0	88257	
				=	2	31.7	18916	kJ/mol
	E(298)			=	-2	48.2	63274	
	H(298)			=	-2	48.2	62330	
	G(298)			=	-2	48.2	94301	

1 D2d SCRF DFT

Chai	rge =	: 1	Mult	ipli	Lcit	су =	1				
Br	-	0	.000000	-	0	. 000	000		0	.000000	
Ν		0	.000000		0	.000	000		2	.139320	
С		0	.000000		1	.1684	486		2	.799239	
С		0	.000000		1	.201	986		4	.185624	
С		0	.000000		0	. 000	000		4	.889330	
С		0	.000000		-1	.201	986		4	.185624	
С		0	.000000		-1	.1684	486		2	.799239	
Ν		0	.000000		0	. 000	000		-2	.139320	
С		1	.168486		0	. 000	000		-2	.799239	
С		1	.201986		0	. 000	000		-4	.185624	
С		0	.000000		0	. 000	000		-4	.889330	
С		-1	.201986		0	.000	000		-4	.185624	
С		-1	.168486		0	.000	000		-2	.799239	
Н		0	.000000		2	.069'	700		2	.196072	
Н		0	.000000		2	.157	927		4	.696052	
Н		0	.000000		0	. 000	000		5	.974145	
Н		0	.000000		-2	.157	927		4	.696052	
Н		0	.000000		-2	.069'	700		2	.196072	
Н		2	.069700		0	.000	000		-2	.196072	
Н		2	.157927		0	.000	000		-4	.696052	
Н		0	.000000		0	.000	000		- 5	.974145	
Н		-2	.157927		0	.000	000		-4	.696052	
Η		-2	.069700		0	.000	000		-2	.196072	
E	(e)			=			-	509.	.70	52870590)
ZI	ΡE			=				0.	.18	0392	
				=				473.	.61	9637	kJ/mol
E	(298)			=			-	509.	.51	3126	
Н	(298)			=			-	509.	.51	2182	
G	(298)			=			-	509.	. 56	4785	
	Freq	lne	ncies:								
	B2	2					161	.634	12	(a)	
	A1	-					173	.036	54	(s)	

1 D2h SCRF DFT

Charge	=	1 Mult	ipli	.city = 1			
Br		0.000000	-	0.00000	0	.000000	
N		0.000000		0.00000	2	.138772	
С		0.000000		1.168437	2	.798622	
С		0.000000		1.201974	4	.184989	
С		0.000000		0.00000	4	.888733	
С		0.000000		-1.201974	4	.184989	
С		0.000000		-1.168437	2	.798622	
N		0.000000		0.00000	-2	.138772	
С		0.000000		-1.168437	-2	.798622	
С		0.000000		-1.201974	-4	.184989	
С		0.000000		0.00000	-4	.888733	
С		0.000000		1.201974	-4	.184989	
С		0.000000		1.168437	- 2	.798622	
Н		0.00000		2.069692	2	.195424	
Н		0.00000		2.157929	4	.695387	
Н		0.00000		0.00000	5	.973541	
H		0.000000		-2.157929	4	.695387	
H		0.000000		-2.069692	2	.195424	
H		0.000000		-2.069692	-2	.195424	
H		0.000000		-2.157929	-4	.695387	
H		0.000000		0.00000	- 5	.973541	
H		0.000000		2.157929	-4	.695387	
Н		0.00000		2.069692	-2	.195424	
E(e)			=	-509	9.70	52866990	
ZPE			=	(0.18	0378	
			=	473	3.58	2650	kJ/mol
E(298	3)		=	-509	9.51	3136	
H(298	3)		=	-509	9.51	2192	
G(298	3)		=	- 509	9.56	4795	
Fre		encies					
LTC	-94 21 T	T		161 80	916	(a)	
Z	7 7 7 7 7 7	,		172 74	534	(a)	
r	10			1/2./(JJI	(0)	

2 C2v twisted SCRF DFT

Charge	=	1 Mult:	ipli	icity = 1		
N		2.303548	-	0.00000	0.00000	
С		2.972076		-0.830482	0.819046	
С		4.358090		-0.854957	0.843218	
С		5.063061		0.00000	0.00000	
С		4.358090		0.854957	-0.843218	
С		2.972076		0.830482	-0.819046	
Н		2.374635		-1.474837	1.454482	
Н		4.867205		-1.536071	1.514992	
Н		6.147858		0.00000	0.00000	
Н		4.867205		1.536071	-1.514992	
Н		2.374635		1.474837	-1.454482	
I		-0.000013		0.00000	0.00000	
N		-2.303530		0.00000	0.00000	
С		-2.972060		0.830452	0.819075	
С		-4.358074		0.854924	0.843251	
С		-5.063045		0.00000	0.00000	
С		-4.358074		-0.854924	-0.843251	
С		-2.972060		-0.830452	-0.819075	
Н		-2.374619		1.474787	1.454531	
Н		-4.867188		1.536012	1.515052	
Н		-6.147842		0.00000	0.00000	
Н		-4.867189		-1.536012	-1.515052	
Н		-2.374619		-1.474787	-1.454531	
				-		
E(e)			=	-50	17.9394097090	
ZPE			=	4.5	0.180209	1
T (0 0 (- \		=	4	/3.13/222	KJ/MOI
E(298	3)		=	-50)/./4/253	
H(298	5)		=	-50)7.746309	
G(298	3)		=	-50)/.802356	
Fre	'n	uencies				
110	-4 4			4 8	3134	
7	Ā			163 3	2099 (a)	
7	Ā			165.4	1807 (s)	
-	-			=		

2 D2d SCRF DFT

Charge = 1Multiplicity = 1 0.000000 0.000000 0.00000 Ι Ν 0.000000 0.000000 2.302262 C C 0.000000 1.166606 2.970701 0.00000 1.200948 4.356767 С 0.00000 0.00000 5.061639 C C N 0.00000 -1.200948 4.356767 0.00000 -1.166606 2.970701 0.00000 0.000000 -2.302262 С 1.166606 0.000000 -2.970701 С 1.200948 0.000000 -4.356767 C 0.00000 0.000000 -5.061639 C C -1.200948 0.000000 -4.356767 -1.166606 0.000000 -2.970701 Η 0.00000 2.071818 2.373573 Н 0.00000 2.157450 4.866176 Η 0.00000 0.000000 6.146456 Н 4.866176 0.00000 -2.157450 Η 0.000000 -2.071818 2.373573 Η 2.071818 0.00000 -2.373573 Η 2.157450 0.000000 -4.866176 Н 0.000000 0.000000 -6.146456 -2.157450 -4.866176 Н 0.000000 Η -2.071818 0.000000 -2.373573 E(e) -507.9392567900 = 0.180075 ZPE = kJ/mol 472.787147 = E(298) = -507.748132 H(298) = -507.747188 G(298) -507.797724 = Frequencies: Β1 -8.4456 В2 161.4689 (a) A1 165.1209 (s)

2 D2h SCRF DFT

Charge	=	1 Multi	ipli	lcity = 1		
I		0.000000	-	0.00000	0.00000	
N		0.000000		0.00000	2.301714	
С		0.000000		1.166568	2.970093	
С		0.000000		1.200939	4.356139	
С		0.000000		0.000000	5.061049	
С		0.000000		-1.200939	4.356139	
С		0.000000		-1.166568	2.970093	
Ν		0.000000		0.000000	-2.301714	
С		0.000000		-1.166568	-2.970093	
С		0.000000		-1.200939	-4.356139	
С		0.000000		0.000000	-5.061049	
С		0.000000		1.200939	-4.356139	
С		0.000000		1.166568	-2.970093	
Н		0.000000		2.071831	2.372966	
Н		0.000000		2.157460	4.865512	
H		0.00000		0.000000	6.145860	
Н		0.00000		-2.157460	4.865512	
Н		0.00000		-2.071831	2.372966	
Н		0.000000		-2.071831	-2.372966	
H		0.000000		-2.157460	-4.865512	
H		0.000000		0.000000	-6.145860	
H		0.000000		2.157460	-4.865512	
H		0.000000		2.071831	-2.372966	
E(e)			=	-50	7.9392742810	
ZPE			=	(0.180067	
			=	472	2.764678	kJ/mol
E(298)		=	-50'	7.748156	
Н(298)		=	-50	7.747212	
G(298)		=	-50'	7.797750	
Fre	aı	encies:				
A	Ū			-8.86	677	
В	10	J		161.7	143 (a)	

AG

3 C2v twisted SCRF DFT											
<u>5 CZV IWISIEU 5C</u>											
Charge - 1	//ultipli	$ait_{1} = 1$									
		CIUY = I	0 201011								
н 0.000		0.000000	1 202002								
N 0.000		1 177067	1.303003								
0.000	0000	1.1//06/	2.032802								
0.000	0000	1.206557	3.415696								
0.000	0000	0.000000	4.114/08								
0.000	0000	-1.206557	3.415696								
0.000	0000	-1.1//06/	2.032802								
N 0.000	0000	0.000000	-1.354899								
C 1.15	3609	0.000000	-2.040439								
C 1.199	9677	0.000000	-3.429573								
C 0.000	0000	0.000000	-4.136829								
C -1.199	9677	0.000000	-3.429573								
C -1.153	3609	0.000000	-2.040439								
Н 0.000	0000	2.068433	1.415521								
Н 0.000	0000	2.158987	3.931754								
Н 0.000	0000	0.000000	5.199731								
Н 0.000	0000	-2.158987	3.931754								
Н 0.000	0000	-2.068433	1.415521								
Н 2.065	5564	0.000000	-1.450161								
Н 2.155	5820	0.000000	-3.940187								
Н 0.000	0000	0.000000	-5.221888								
Н -2.155	5820	0.000000	-3.940187								
H -2.065	5564	0.00000	-1.450161								
E(e) ZPE	= =	-497. 0.	.1744979390 .190524								
	=	500.	.220798	kJ/mol							
E(298)	=	-496.	.973581								
H(298)	=	-496.	.972637								
G(298)	=	-497.	.022392								
Frequencia	≥g•										
Δ1		127 233	8								
Δ1		611 044	10								
AT.		011.044									

164.9372 (s)

3 C2v planar SCRF DFT

Charge =	=	1 Mult	[pl	icity = 1		
Н		0.000000	-	0.00000	0.321471	
N		0.000000		0.000000	1.397362	
С		0.00000		1.177040	2.048494	
С		0.00000		1.206123	3.431082	
С		0.00000		0.000000	4.130350	
С		0.00000		-1.206123	3.431082	
С		0.00000		-1.177040	2.048494	
N		0.000000		0.00000	-1.367777	
C		0.000000		-1.152237	-2.056653	
C		0.000000		-1.198834	-3.445783	
C		0.000000		0.000000	-4.153837	
C		0.000000		1.198834	-3.445783	
C		0.000000		1.152237	-2.056653	
H		0.000000		2.069982	1.433921	
H		0.000000		2.158730	3.946801	
H		0.000000		0.000000	5.215365	
H		0.000000		-2.158/30	3.946801	
H		0.000000		-2.069982	1.433921	
п		0.000000		-2.066540	-1.4/0125	
п		0.000000		-2.155482	-3.900490	
п		0.000000		0.000000	-3.230000	
и П		0.000000		2.155402	-1 470125	
11		0.000000		2.000340	1.4/0125	
E(e)			=	-49	7.1730487440	
ZPE			=		0.190665	
			=	50	0.591751	kJ/mol
E(298))		=	-49	6.972945	
H(298))		=	-49	6.972001	
G(298))		=	-49	7.018376	
Frod	- 11-	encies				
гтес	1u 2	lencres:		-51 30	630	
n 2	-			51.5	0.50	

A1 A1	146.2439 (a) 611.7396 (s)	
Acetonitrile C3v SCR	DFT	
Charge = 0 Mult N 0.000000 C 0.000000 C 0.000000 H 0.000000 H 0.888613 H -0.888613	iplicity = 1 0.000000 1.432336 0.000000 0.279074 0.000000 -1.175586 1.026082 -1.549091 -0.513041 -1.549091 -0.513041 -1.549091	
E(e) ZPE E(298) H(298) G(298)	= -132.8030090700 = 0.045103 = 118.416865 = -132.754315 = -132.750867	kJ/mol
Frequencies: E	393.1575	
pyridine-bromonium-a	acetonitrile complex D3h SCRF DFT	
Charge = 1 Mult N 0.000000 C 0.000000 H 0.000000 H -0.892466 Br 0.000000 N 0.000000 C 0.000000 C 0.000000 C 0.000000 H 0.892466 H -0.892466 H -0.892466 E(e) ZPE E(298) H(298) G(298)	<pre>iplicity = 1 0.000000 2.060100 0.000000 3.207055 0.000000 4.652604 1.030531 5.015760 -0.515266 5.015760 0.000000 0.000000 0.000000 -2.060100 0.000000 -3.207055 0.000000 -3.207055 0.000000 -4.652604 1.030531 -5.015760 -0.515266 -5.015760 -0.515266 -5.015760 = 0.092942 = 244.019081 = -278.432712 = -278.431768 = -278.481130</pre>	kJ/mol
nyriding igdonium og	tonitrile complex D2h SCRE DET	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	iplicity = 1 0.000000 2.227939 0.000000 3.375806 0.000000 4.821272 1.030273 5.185199 -0.515137 5.185199 -0.515137 5.185199 0.000000 -2.227939 0.000000 -2.227939 0.000000 -3.375806 0.000000 -4.821272 1.030273 -5.185199 -0.515137 -5.185199 -0.515137 -5.185199 -0.515137 -5.185199 -0.515137 -5.185199	
2PE E(298) H(298) G(298)	$\begin{array}{cccc} = & 0.092891 \\ = & 243.886406 \\ = & -276.678786 \\ = & -276.677841 \\ = & -276.727405 \end{array}$	kJ/mol

pyridine-protium-acetonitrile complex D3h SCRF DFT

Cha	irge	= 1	ľ	Mult	ipli	ci	ty =	1								
Η	-	- 0	.001	1253	-	0	.446	929		0	.00	000	00			
Ν		- 0	.001	1437		- 0	.590	479		0	.00	000	00			
С		- 0	.001	1433		-1	.235	319		1	.18	152	28			
С		- 0	.001	1433		-2	.616	956		1	.20	743	35			
С		- 0	.001	1426		-3	.314	810		0	.00	000	00			
С		- 0	.001	1433		-2	.616	956		-1	.20	743	35			
С		- 0	.001	1433		-1	.235	319		-1	.18	152	28			
Η		- 0	.001	1412		- 0	.615	066		2	.07	032	29			
Η		- 0	.001	1418		-3	.133	575		2	.15	947	78			
Η		- 0	.001	1394		-4	.399	857		0	.00	000	00			
Η		- 0	.001	1418		-3	.133	575		-2	.15	947	78			
Η		- 0	.001	1412		- 0	.615	066		-2	.07	032	29			
Ν		0	.000	0157		2	.284	314		0	.00	000	00			
С		0	.002	2130		3	.435	414		0	.00	000	00			
С		0	.005	5038		4	.887	339		0	.00	000	00			
Η		1	.033	3091		5	.255	595		0	.00	000	00			
Η		- 0	.50	7941		5	.258	708		- 0	.88	963	31			
Η		- 0	.50	7941		5	.258	708		0	.88	963	31			
-	- / ``															
E	:(e)				=			- :	38I.	614	408	695	970			
Z	1 P E				=				.0	14	790	94		1.	T /	-
-	1/000	、 、			=			-	388.	322	264	:7		K	J/mo	Τ
E	5(298)			=				381. 201	45	623	57				
E	1(298)			=				38⊥. 201	45	529	13				
Ģ	-(298)			=				301.	50	569	12				

OTf- Cs SCRF DFT

Charge	e = -1	Multi	plicity = 1		
S	-0.4	10103	-0.823814	0.00000	
С	0.4	30493	0.864227	0.00000	
0	-1.8	47724	-0.483556	0.00000	
F	1.7	69013	0.737293	0.00000	
F	0.0	83511	1.575575	1.086795	
F	0.0	83511	1.575575	-1.086795	
0	0.0	83511	-1.445742	1.245736	
0	0.0	83511	-1.445742	-1.245736	
E(e)		=	-	961.814080079	0
ZPE		=		0.026215	
		=		68.827679	kJ/mol
E(29	98)	=	-	961.780593	
Н(29	98)	=	-	961.779649	
G(29	98)	=	-	961.820534	

BrOTf Cs SCRF DFT

Charge S C O F F F O O Br	= 0 I I 0.75: 1.46 -0.79 2.79 1.07 1.07 1.07 1.07 -2.17	Multipl 3084 9507 9885 0943 6880 6880 6880 6880 6880 7135	icity = 1 -0.345152 1.424580 0.199273 1.296432 2.068708 2.068708 -0.977480 -0.977480 -1.082405	$\begin{array}{c} 0.000000\\ 0.000000\\ 0.000000\\ 1.086958\\ -1.086958\\ 1.262020\\ -1.262020\\ 0.000000\end{array}$	
E(e) ZPE E(298 H(298 G(298	3) 3) 3)	= = = =	- 97 - 97 - 97 - 97 - 97	74.7286406070 0.027086 71.113858 74.692114 74.691169 74.739765	kJ/mol

IOTf Cs SCRF DFT

Cł	narge	=	0 Mult	ipli	icity = 1			
S			1.126947		-0.15310)4	0.000000	
С			1.854963		1.60417	1	0.000000	
0		-	0.406530		0.35860)1	0.000000	
F			3.177999		1.47225	59	0.000000	
F			1.469292		2.25674	8	1.086966	
F			1.469292		2.25674	8	-1.086966	
0			1.469292		-0.78331	.1	1.260619	
0			1.469292		-0.78331	.1	-1.260619	
Ι		-	1.971068		-0.96949	0	0.000000	
	E(e)			=		-972.	9666481320	
	ZPE			=		Ο.	027043	
				=		71.	000137	kJ/mol
	E(298)		=		-972.	930123	
	H(298)		=		-972.	929179	
	G(298)		=		-972.	978516	

HOTf C1 SCRF DFT

Charge	= 0	Multi	plic	ity = 1	1			
S	-0.8	67610	- ().1415	46	0.04	16766	
С	1.0	18475	().0087	43	-0.00)2440	
0	-1.2	83584	1	L.2654	80	-0.60)4480	
F	1.5	42080	- 1	L.0926	35	0.52	27243	
F	1.3	98619	1	L.0694	52	0.70)5451	
F	1.4	27795	().1399	27	-1.25	58916	
0	-1.2	53290	- ().2070	44	1.44	2450	
0	-1.2	37008	- 1	L.1605	37	-0.90)9633	
Н	-1.3	54481	-	L.9783	98	0.07	75695	
E(e)			_		-962	23036	514940	
ZPE			=		0.	03691	1	
			=		96.	91047	77	kJ/mol
E(298	3)		=		-962.	18550)5	
Н(298	3)		=		-962.	18456	50	
G(298	B)		=		-962.	22717	77	

HOTf Cs SCRF DFT

Charge = 0 Mul S -0.27367 C 0.45716 O -1.80147 F 1.78160 F 0.07197 O 0.07197 O 0.07197 H -2.43375	tipl 9 66 9 0 2 2 2 2 2 2 3 0	<pre>icity = 1 -0.837104 0.908601 -0.334510 0.780307 1.565945 1.565945 -1.468568 -1.468568 -1.094544</pre>	$\begin{array}{c} 0.000000\\ 0.000000\\ 0.000000\\ 1.086846\\ -1.086846\\ 1.259735\\ -1.259735\\ 0.000000\end{array}$	
E(e) ZPE	=	-96	2.2279368350 0.036129	
E(298) H(298) G(298)	= = =	9 - 96 - 96: - 96: - 96:	4.857012 2.184329 2.183385 2.224826	kJ/mol
Frequencies: A"		-130.8	856	

3.2.2. Dichloromethane

pyridine C	2v SCRF DFT			
Charge =	0 Multipl	icity = 1		
N	0.000000	0.000000	1.417467	
С	0.000000	1.144215	0.720587	
С	0.000000	1.197075	-0.671414	
С	0.00000	0.000000	-1.382101	
С	0.000000	-1.197075	-0.671414	
С	0.00000	-1.144215	0.720587	
H	0.000000	2.061206	1.304259	
H	0.00000	2.154393	-1.180533	
H	0.00000	0.00000	-2.467197	
H	0.00000	-2.154393	-1.180533	
H	0.000000	-2.061206	1.304259	
E(e)	=	-248	8.3548683070	
ZPE	=	(0.088293	
	=	233	1.813516	kJ/mol
E(298)	=	-248	3.262296	
H(298)	=	-248	3.261352	
G(298)	=	-248	3.293322	

1 D2d SCRF DFT

Charge	=	1 Mult	ipl:	icity = 1				
Br		0.000000	-	0.00000	0.0	00000		
N		0.000000		0.000000	2.1	39530		
С		0.000000		1.168333	2.7	99603		
С		0.000000		1.201910	4.1	85950		
С		0.000000		0.000000	4.8	89670		
С		0.000000		-1.201910	4.1	85950		
С		0.000000		-1.168333	2.7	99603		
N		0.000000		0.000000	-2.1	39530		
С		1.168333		0.000000	-2.7	99603		
С		1.201910		0.000000	-4.1	85950		
С		0.00000		0.000000	-4.8	89670		
С		-1.201910		0.000000	-4.1	85950		
С	-	-1.168333		0.000000	-2.7	99603		
Н		0.00000		2.069266	2.1	96490		
H		0.000000		2.157615	4.6	96386		
H		0.000000		0.000000	5.9	74275		
H		0.000000		-2.157615	4.6	96386		
H		0.000000		-2.069266	2.1	96490		
H		2.069266		0.000000	-2.1	96490		
H		2.157615		0.000000	-4.6	96386		
H		0.000000		0.000000	-5.9	74275		
H	-	-2.157615		0.000000	-4.6	96386		
H	-	-2.069266		0.000000	-2.1	96490		
E(e)			=	-50	9.6998	061030		
ZPE			=		0.1805	05		
			=	47	3.9144	84	kJ/mol	
E(29	8)		=	-50	9.5075	03	- / -	
Н(29	8)		=	-50	9.5065	59		
G(29	8)		=	-50	9.5607	86		
Fr	equ	lencies:						
	RT			3.4	691 691	`		
-	82 7 1			164.8	693 (a)		
	AT			1/3.1	980 (S)		

1 D2h SCRF DFT

Charge	=	1 Multi	ipli	lcity = 1		
Br		0.000000	-	0.00000	0.00000	
N		0.000000		0.000000	2.139191	
С		0.000000		1.168206	2.799298	
С		0.000000		1.201864	4.185614	
С		0.000000		0.000000	4.889388	
С		0.000000		-1.201864	4.185614	
С		0.000000		-1.168206	2.799298	
Ν		0.000000		0.000000	-2.139191	
С		0.000000		-1.168206	-2.799298	
С		0.000000		-1.201864	-4.185614	
С		0.000000		0.000000	-4.889388	
С		0.000000		1.201864	-4.185614	
С		0.000000		1.168206	-2.799298	
Н		0.000000		2.069226	2.196287	
Н		0.000000		2.157582	4.696020	
Н		0.000000		0.000000	5.973984	
Н		0.000000		-2.157582	4.696020	
Н		0.000000		-2.069226	2.196287	
Н		0.000000		-2.069226	-2.196287	
Н		0.000000		-2.157582	-4.696020	
Н		0.000000		0.000000	-5.973984	
Н		0.000000		2.157582	-4.696020	
Н		0.000000		2.069226	-2.196287	
E(e)			=	-50	9.6997020410	
ZPE			=		0.180480	
			=	47	3.849297	kJ/mol
E(298	8)		=	-50	9.507413	
H(298	8)		=	-50	9.506469	
G(298	8)		=	-50	9.561678	
Fre	equ	lencies:				
1	AU			1.2	428	
I	B1(J		164.8	975 (a)	
1	AG			172.8	800 (s)	

2 D2 SCRF DFT

Charge	= 1 Mult:	iplic	ity = 1		
N	0.00000	-	0.00000	2.140010	
С	0.00000		1.168267	2.799639	
C	0.000408		1.201922	4.185997	
C	0.00000		0.000000	4.889663	
C	-0.000408	-	1.201922	4.185997	
C	0.00000	-	1.168267	2.799639	
Н	-0.001143		2.068906	2.196198	
Н	0.000358		2.157705	4.696269	
Н	0.00000		0.000000	5.974234	
Н	-0.000358	-	2.157705	4.696269	
Н	0.001143	-	2.068906	2.196198	
Br	0.00000		0.000000	0.000196	
Ν	0.00000		0.000000	-2.139589	
С	0.873848		0.775373	-2.799876	
С	0.898598		0.797889	-4.186194	
С	0.00000		0.000000	-4.889961	
С	-0.898598	-	0.797889	-4.186194	
С	-0.873848	-	0.775373	-2.799876	
Н	1.548192		1.373287	-2.197213	
Н	1.613283		1.432491	-4.696527	
Н	0.000000		0.000000	-5.974524	
Н	-1.613283	-	1.432491	-4.696527	
H	-1.548192	-	1.373287	-2.197213	
E(e) ZPE		=	-509	.6997498610 .180538	
		=	474	.001887	kJ/mol
E(298	3)	=	-509	.507436	
Н(298	3)	=	-509	.506491	
G(298	3)	=	-509	.559904	
Fre	equencies:				
I	3		146.736	54 (a)	
7	A		164.595	53 (s)	

2 D2d SCRF DFT

$\begin{array}{llllllllllllllllllllllllllllllllllll$	<pre>iplicity = 1</pre>	
E(e) ZPE	= -507.9337813400 = 0.180198	/ .]
E (298) H (298) G (298)	= 473.109566 = -507.742524 = -507.741580 = -507.792266	kJ/mol
Frequencies: B1 B2 A1	-22.3086 162.1558 (a) 164.7295 (s)	

2 D2h SCRF DFT

Charge =	1 Mult:	iplicity = 1		
I	0.000000	0.00000	0.000000	
N	0.000000	0.00000	2.301933	
С	0.000000	1.166394	2.970495	
С	0.000000	1.200853	4.356488	
С	0.000000	0.00000	5.061406	
С	0.000000	-1.200853	4.356488	
С	0.000000	-1.166394	2.970495	
N	0.000000	0.00000	-2.301933	
С	0.000000	-1.166394	-2.970495	
С	0.000000	-1.200853	-4.356488	
С	0.000000	0.00000	-5.061406	
C	0.000000	1.200853	-4.356488	
C	0.000000	1.166394	-2.970495	
H	0.000000	2.071416	2.373532	
H	0.000000	2.157130	4.865885	
Н	0.00000	0.00000	6.146005	
Н	0.00000	-2.157130	4.865885	
Н	0.00000	-2.071416	2.373532	
Н	0.00000	-2.071416	-2.373532	
Н	0.00000	-2.157130	-4.865885	
H	0.000000	0.00000	-6.146005	
Н	0.000000	2.157130	-4.865885	
H	0.00000	2.071416	-2.373532	
E(e)		-507.	9337230510	
ZPE		= 0.	180187	
		= 473.	080947	kJ/mol
E(298)		= -507.	742473	
H(298)		= -507.	741529	
G(298)		= -507.	792227	
Free	mencies			
I L EQ	[uchicres.	-23 349	5	
110		25.515	5	

B1U	162.2789	(a)
AG	164.5005	(s)

3 C2v twisted SCRF DFT

Charge	= 1 Mu	ltipl	icity = 1		
Н	0.0000	000	0.000000	0.295007	
N	0.000	000	0.000000	1.379317	
С	0.000	000	1.176840	2.029673	
С	0.000	000	1.206470	3.412491	
С	0.000	000	0.000000	4.111525	
С	0.000	000	-1.206470	3.412491	
С	0.000	000	-1.176840	2.029673	
N	0.000	000	0.000000	-1.351256	
С	1.1536	511	0.000000	-2.037245	
С	1.1995	525	0.000000	-3.426051	
С	0.000	000	0.000000	-4.133293	
С	-1.1995	525	0.000000	-3.426051	
С	-1.1536	511	0.000000	-2.037245	
Н	0.000	000	2.068051	1.412613	
H	0.000	000	2.158576	3.928733	
H	0.000	000	0.000000	5.196327	
H	0.000	000	-2.158576	3.928733	
Н	0.000	000	-2.068051	1.412613	
H	2.0656	581	0.000000	-1.447497	
H	2.1554	199	0.000000	-3.936564	
H	0.000	000	0.000000	-5.218132	
H	-2.1554	199	0.000000	-3.936564	
Н	-2.0656	581	0.000000	-1.447497	
E(e)		=	- 4	97.1684564410	
ZPE		=		0.190633	
		=	5	00.507067	kJ/mol
E(29	8)	=	-4	96.967449	
Н(29	8)	=	-4	96.966505	
G(29	8)	=	- 4	97.016190	
Ē٣	equencies	۰.			
ΡL	24uencie:		131	8475	
	Δ1		£10	2048	
			010.	2010	

3 C2v planar SCRF DFT

Charge	_	1 Multi	nl	icity - 1		
u u	_		Рт		0 314183	
N		0.000000		0.000000	1 392700	
C		0 000000		1 176707	2 044308	
C		0.000000		1,206070	3,426908	
C		0.000000		0.000000	4.126247	
C		0.000000		-1.206070	3.426908	
C		0.000000		-1.176707	2.044308	
N		0.000000		0.000000	-1.363321	
С		0.000000		-1.152093	-2.052413	
С		0.000000		-1.198741	-3.441271	
С		0.000000		0.00000	-4.149283	
С		0.000000		1.198741	-3.441271	
С		0.00000		1.152093	-2.052413	
Н		0.000000		2.069853	1.430720	
Н		0.000000		2.158396	3.942715	
Н		0.000000		0.000000	5.211043	
Н		0.00000		-2.158396	3.942715	
Н		0.00000		-2.069853	1.430720	
Н		0.000000		-2.066776	-1.466940	
Н		0.000000		-2.155159	-3.950959	
Н		0.000000		0.00000	-5.234111	
Н		0.00000		2.155159	-3.950959	
Н		0.000000		2.066776	-1.466940	
E(e)			=	-49	7.1667097120	
ZPE			=		0.190864	
			=	50	1.111781	kJ/mol
E(298	3)		=	-49	6.966477	• -
H(298	3)		=	-49	6.965533	
G(298	3)		=	-49	7.011624	

Frequencies:

A1 A1		169.6880 610.6769					
OTf- Cs SO	CRF DFT						
Charge = S C F F F O O	-1 Multip -0.410982 0.429764 -1.847843 1.769430 0.083970 0.083970 0.083970 0.083970	<pre>licity = 1 -0.826133 0.862811 -0.483459 0.739655 1.576850 1.576850 -1.445705 -1.445705</pre>	$\begin{array}{c} 0.000000\\ 0.000000\\ 0.000000\\ 1.086417\\ -1.086417\\ 1.246079\\ -1.246079\end{array}$				
E(e) ZPE E(298) H(298) G(298)	= = = = =	- 96 - 96 - 96 - 96 - 96	1.8065028330 0.026252 8.925166 1.772978 1.772034 1.812923	kJ/mol			

BrOTf Cs SCRF DFT

Charge S C O F	= ((Mult: .753217 .468711 .799946 2.790292	iplic -	ity = 1 0.346234 1.423849 0.199640 1.296317		0.000000 0.000000 0.000000 0.000000		
г F	-	L.076620		2.068505		-1 086953		
0	-	L.076620	-	0.977215		1.262533		
0	1	L.076620	-	0.977215		-1.262533		
Br	- 2	2.176625	-	1.081857		0.000000		
E(e) ZPE			= =	- 9	974. 0. 71.	7278116170 027158 303226	kJ/mol	
E(298	3)		=	- 9	974.	691226	- / -	
Н(298	3)		=	- 9	974.	690282		
G(298	3)		=	- 9	974.	738845		

IOTf Cs SCRF DFT

Charge S C O F F F	= 0 Multip 1.126947 1.854963 -0.406530 3.177999 1.469292 1.469292	olicity = 1 -0.153104 1.604171 0.358601 1.472259 2.256748 2.256748	0.000000 0.000000 0.000000 0.000000 1.086966 -1.086966	
0	1.469292	-0.783311	1.260619	
0	1.469292	-0.783311	-1.260619	
I	-1.971068	-0.969490	0.00000	
E(e) ZPE	= = -	- 97	72.9666481320 0.027043 71.000137	k.T/mol
E(29)	8) -	_ 95	72 930123	NO/ MOI
H(298	B) =	-97	2.929179	
G(298	B) =	- 97	72.978516	

HOTf C1 SCRF DFT

Charge	= 0 Multip	plicity = 1	
S	-0.867617	-0.143175	0.051103
С	1.018136	0.007292	-0.002977
0	-1.279157	1.245784	-0.648546
F	1.544389	-1.072960	0.564844
F	1.394430	1.093706	0.669162
F	1.428764	0.097581	-1.262252
0	-1.253661	-0.151699	1.448041

O H		-1.238520 -1.364480		-1.192884 1.972495	-0.869031 0.010712	
	E(e) ZPE		= = =	- 9	62.2282615740 0.037153 97.543810	kJ/mol
	E(298) H(298) G(298)))	= = =	- 9 - 9 - 9	62.183210 62.182266 62.224416	,

HOTf Cs SCRF DFT

Charge	e = 0 Mu	ltiplici	.ty = 1		
S	-0.2710	59 -0	.837771	0.00000	
С	0.4572	13 C	.909313	0.00000	
0	-1.8022	91 -0	.334673	0.00000	
F	1.7816	31 0	.782047	0.00000	
F	0.0708	47 1	.565509	1.086889	
F	0.0708	47 1	.565509	-1.086889	
0	0.0708	47 -1	.468685	1.260258	
0	0.0708	47 -1	.468685	-1.260258	
H	-2.4314	79 -1	.092779	0.00000	
E(e)	=	-9	62.2258136930	
ZPE		=		0.036320	
		=		95.357628	kJ/mol
E(2	98)	=	- 9	62.182011	
Η(2	98)	=	- 9	62.181066	
G(2	98)	=	- 9	62.222553	
F.	requencies	:	1 - 0	2205	
	A''		-158.	3285	